This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgdv.1 | |- S = ( R |`s A ) |
|
| subrgdv.2 | |- ./ = ( /r ` R ) |
||
| subrgdv.3 | |- U = ( Unit ` S ) |
||
| subrgdv.4 | |- E = ( /r ` S ) |
||
| Assertion | subrgdv | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ./ Y ) = ( X E Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgdv.1 | |- S = ( R |`s A ) |
|
| 2 | subrgdv.2 | |- ./ = ( /r ` R ) |
|
| 3 | subrgdv.3 | |- U = ( Unit ` S ) |
|
| 4 | subrgdv.4 | |- E = ( /r ` S ) |
|
| 5 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 6 | eqid | |- ( invr ` S ) = ( invr ` S ) |
|
| 7 | 1 5 3 6 | subrginv | |- ( ( A e. ( SubRing ` R ) /\ Y e. U ) -> ( ( invr ` R ) ` Y ) = ( ( invr ` S ) ` Y ) ) |
| 8 | 7 | 3adant2 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( ( invr ` R ) ` Y ) = ( ( invr ` S ) ` Y ) ) |
| 9 | 8 | oveq2d | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) = ( X ( .r ` R ) ( ( invr ` S ) ` Y ) ) ) |
| 10 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 11 | 1 10 | ressmulr | |- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 12 | 11 | 3ad2ant1 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( .r ` R ) = ( .r ` S ) ) |
| 13 | 12 | oveqd | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` S ) ` Y ) ) = ( X ( .r ` S ) ( ( invr ` S ) ` Y ) ) ) |
| 14 | 9 13 | eqtrd | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) = ( X ( .r ` S ) ( ( invr ` S ) ` Y ) ) ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | 15 | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 17 | 16 | 3ad2ant1 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> A C_ ( Base ` R ) ) |
| 18 | simp2 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> X e. A ) |
|
| 19 | 17 18 | sseldd | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> X e. ( Base ` R ) ) |
| 20 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 21 | 1 20 3 | subrguss | |- ( A e. ( SubRing ` R ) -> U C_ ( Unit ` R ) ) |
| 22 | 21 | 3ad2ant1 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> U C_ ( Unit ` R ) ) |
| 23 | simp3 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> Y e. U ) |
|
| 24 | 22 23 | sseldd | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> Y e. ( Unit ` R ) ) |
| 25 | 15 10 20 5 2 | dvrval | |- ( ( X e. ( Base ` R ) /\ Y e. ( Unit ` R ) ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 26 | 19 24 25 | syl2anc | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 27 | 1 | subrgbas | |- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 28 | 27 | 3ad2ant1 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> A = ( Base ` S ) ) |
| 29 | 18 28 | eleqtrd | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> X e. ( Base ` S ) ) |
| 30 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 31 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 32 | 30 31 3 6 4 | dvrval | |- ( ( X e. ( Base ` S ) /\ Y e. U ) -> ( X E Y ) = ( X ( .r ` S ) ( ( invr ` S ) ` Y ) ) ) |
| 33 | 29 23 32 | syl2anc | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X E Y ) = ( X ( .r ` S ) ( ( invr ` S ) ` Y ) ) ) |
| 34 | 14 26 33 | 3eqtr4d | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ./ Y ) = ( X E Y ) ) |