This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suborng | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. oRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. Ring ) |
|
| 2 | ringgrp | |- ( ( R |`s A ) e. Ring -> ( R |`s A ) e. Grp ) |
|
| 3 | 2 | adantl | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. Grp ) |
| 4 | orngogrp | |- ( R e. oRing -> R e. oGrp ) |
|
| 5 | isogrp | |- ( R e. oGrp <-> ( R e. Grp /\ R e. oMnd ) ) |
|
| 6 | 5 | simprbi | |- ( R e. oGrp -> R e. oMnd ) |
| 7 | 4 6 | syl | |- ( R e. oRing -> R e. oMnd ) |
| 8 | ringmnd | |- ( ( R |`s A ) e. Ring -> ( R |`s A ) e. Mnd ) |
|
| 9 | submomnd | |- ( ( R e. oMnd /\ ( R |`s A ) e. Mnd ) -> ( R |`s A ) e. oMnd ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. oMnd ) |
| 11 | isogrp | |- ( ( R |`s A ) e. oGrp <-> ( ( R |`s A ) e. Grp /\ ( R |`s A ) e. oMnd ) ) |
|
| 12 | 3 10 11 | sylanbrc | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. oGrp ) |
| 13 | simp-4l | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> R e. oRing ) |
|
| 14 | reldmress | |- Rel dom |`s |
|
| 15 | 14 | ovprc2 | |- ( -. A e. _V -> ( R |`s A ) = (/) ) |
| 16 | 15 | fveq2d | |- ( -. A e. _V -> ( Base ` ( R |`s A ) ) = ( Base ` (/) ) ) |
| 17 | 16 | adantl | |- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ -. A e. _V ) -> ( Base ` ( R |`s A ) ) = ( Base ` (/) ) ) |
| 18 | base0 | |- (/) = ( Base ` (/) ) |
|
| 19 | 17 18 | eqtr4di | |- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ -. A e. _V ) -> ( Base ` ( R |`s A ) ) = (/) ) |
| 20 | eqid | |- ( Base ` ( R |`s A ) ) = ( Base ` ( R |`s A ) ) |
|
| 21 | eqid | |- ( 1r ` ( R |`s A ) ) = ( 1r ` ( R |`s A ) ) |
|
| 22 | 20 21 | ringidcl | |- ( ( R |`s A ) e. Ring -> ( 1r ` ( R |`s A ) ) e. ( Base ` ( R |`s A ) ) ) |
| 23 | 22 | ne0d | |- ( ( R |`s A ) e. Ring -> ( Base ` ( R |`s A ) ) =/= (/) ) |
| 24 | 23 | ad2antlr | |- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ -. A e. _V ) -> ( Base ` ( R |`s A ) ) =/= (/) ) |
| 25 | 24 | neneqd | |- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ -. A e. _V ) -> -. ( Base ` ( R |`s A ) ) = (/) ) |
| 26 | 19 25 | condan | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> A e. _V ) |
| 27 | eqid | |- ( R |`s A ) = ( R |`s A ) |
|
| 28 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 29 | 27 28 | ressbas | |- ( A e. _V -> ( A i^i ( Base ` R ) ) = ( Base ` ( R |`s A ) ) ) |
| 30 | inss2 | |- ( A i^i ( Base ` R ) ) C_ ( Base ` R ) |
|
| 31 | 29 30 | eqsstrrdi | |- ( A e. _V -> ( Base ` ( R |`s A ) ) C_ ( Base ` R ) ) |
| 32 | 26 31 | syl | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( Base ` ( R |`s A ) ) C_ ( Base ` R ) ) |
| 33 | 32 | ad3antrrr | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( Base ` ( R |`s A ) ) C_ ( Base ` R ) ) |
| 34 | simpllr | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> a e. ( Base ` ( R |`s A ) ) ) |
|
| 35 | 33 34 | sseldd | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> a e. ( Base ` R ) ) |
| 36 | simprl | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a ) |
|
| 37 | orngring | |- ( R e. oRing -> R e. Ring ) |
|
| 38 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 39 | 37 38 | syl | |- ( R e. oRing -> R e. Grp ) |
| 40 | 39 | adantr | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> R e. Grp ) |
| 41 | 28 | ressinbas | |- ( A e. _V -> ( R |`s A ) = ( R |`s ( A i^i ( Base ` R ) ) ) ) |
| 42 | 29 | oveq2d | |- ( A e. _V -> ( R |`s ( A i^i ( Base ` R ) ) ) = ( R |`s ( Base ` ( R |`s A ) ) ) ) |
| 43 | 41 42 | eqtrd | |- ( A e. _V -> ( R |`s A ) = ( R |`s ( Base ` ( R |`s A ) ) ) ) |
| 44 | 26 43 | syl | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) = ( R |`s ( Base ` ( R |`s A ) ) ) ) |
| 45 | 44 3 | eqeltrrd | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s ( Base ` ( R |`s A ) ) ) e. Grp ) |
| 46 | 28 | issubg | |- ( ( Base ` ( R |`s A ) ) e. ( SubGrp ` R ) <-> ( R e. Grp /\ ( Base ` ( R |`s A ) ) C_ ( Base ` R ) /\ ( R |`s ( Base ` ( R |`s A ) ) ) e. Grp ) ) |
| 47 | 40 32 45 46 | syl3anbrc | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( Base ` ( R |`s A ) ) e. ( SubGrp ` R ) ) |
| 48 | eqid | |- ( R |`s ( Base ` ( R |`s A ) ) ) = ( R |`s ( Base ` ( R |`s A ) ) ) |
|
| 49 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 50 | 48 49 | subg0 | |- ( ( Base ` ( R |`s A ) ) e. ( SubGrp ` R ) -> ( 0g ` R ) = ( 0g ` ( R |`s ( Base ` ( R |`s A ) ) ) ) ) |
| 51 | 47 50 | syl | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( 0g ` R ) = ( 0g ` ( R |`s ( Base ` ( R |`s A ) ) ) ) ) |
| 52 | 44 | fveq2d | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( 0g ` ( R |`s A ) ) = ( 0g ` ( R |`s ( Base ` ( R |`s A ) ) ) ) ) |
| 53 | 51 52 | eqtr4d | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( 0g ` R ) = ( 0g ` ( R |`s A ) ) ) |
| 54 | 53 | ad2antrr | |- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( 0g ` R ) = ( 0g ` ( R |`s A ) ) ) |
| 55 | 26 | ad2antrr | |- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> A e. _V ) |
| 56 | eqid | |- ( le ` R ) = ( le ` R ) |
|
| 57 | 27 56 | ressle | |- ( A e. _V -> ( le ` R ) = ( le ` ( R |`s A ) ) ) |
| 58 | 55 57 | syl | |- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( le ` R ) = ( le ` ( R |`s A ) ) ) |
| 59 | eqidd | |- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> a = a ) |
|
| 60 | 54 58 59 | breq123d | |- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( ( 0g ` R ) ( le ` R ) a <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a ) ) |
| 61 | 60 | adantr | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( ( 0g ` R ) ( le ` R ) a <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a ) ) |
| 62 | 36 61 | mpbird | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` R ) ( le ` R ) a ) |
| 63 | simplr | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> b e. ( Base ` ( R |`s A ) ) ) |
|
| 64 | 33 63 | sseldd | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> b e. ( Base ` R ) ) |
| 65 | simprr | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) |
|
| 66 | eqidd | |- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> b = b ) |
|
| 67 | 54 58 66 | breq123d | |- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( ( 0g ` R ) ( le ` R ) b <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) |
| 68 | 67 | adantr | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( ( 0g ` R ) ( le ` R ) b <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) |
| 69 | 65 68 | mpbird | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` R ) ( le ` R ) b ) |
| 70 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 71 | 28 56 49 70 | orngmul | |- ( ( R e. oRing /\ ( a e. ( Base ` R ) /\ ( 0g ` R ) ( le ` R ) a ) /\ ( b e. ( Base ` R ) /\ ( 0g ` R ) ( le ` R ) b ) ) -> ( 0g ` R ) ( le ` R ) ( a ( .r ` R ) b ) ) |
| 72 | 13 35 62 64 69 71 | syl122anc | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` R ) ( le ` R ) ( a ( .r ` R ) b ) ) |
| 73 | 54 | adantr | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` R ) = ( 0g ` ( R |`s A ) ) ) |
| 74 | 58 | adantr | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( le ` R ) = ( le ` ( R |`s A ) ) ) |
| 75 | 55 | adantr | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> A e. _V ) |
| 76 | 27 70 | ressmulr | |- ( A e. _V -> ( .r ` R ) = ( .r ` ( R |`s A ) ) ) |
| 77 | 75 76 | syl | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( .r ` R ) = ( .r ` ( R |`s A ) ) ) |
| 78 | 77 | oveqd | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( a ( .r ` R ) b ) = ( a ( .r ` ( R |`s A ) ) b ) ) |
| 79 | 73 74 78 | breq123d | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( ( 0g ` R ) ( le ` R ) ( a ( .r ` R ) b ) <-> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) |
| 80 | 72 79 | mpbid | |- ( ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) /\ ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) |
| 81 | 80 | ex | |- ( ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ a e. ( Base ` ( R |`s A ) ) ) /\ b e. ( Base ` ( R |`s A ) ) ) -> ( ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) |
| 82 | 81 | anasss | |- ( ( ( R e. oRing /\ ( R |`s A ) e. Ring ) /\ ( a e. ( Base ` ( R |`s A ) ) /\ b e. ( Base ` ( R |`s A ) ) ) ) -> ( ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) |
| 83 | 82 | ralrimivva | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> A. a e. ( Base ` ( R |`s A ) ) A. b e. ( Base ` ( R |`s A ) ) ( ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) |
| 84 | eqid | |- ( 0g ` ( R |`s A ) ) = ( 0g ` ( R |`s A ) ) |
|
| 85 | eqid | |- ( .r ` ( R |`s A ) ) = ( .r ` ( R |`s A ) ) |
|
| 86 | eqid | |- ( le ` ( R |`s A ) ) = ( le ` ( R |`s A ) ) |
|
| 87 | 20 84 85 86 | isorng | |- ( ( R |`s A ) e. oRing <-> ( ( R |`s A ) e. Ring /\ ( R |`s A ) e. oGrp /\ A. a e. ( Base ` ( R |`s A ) ) A. b e. ( Base ` ( R |`s A ) ) ( ( ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) a /\ ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) b ) -> ( 0g ` ( R |`s A ) ) ( le ` ( R |`s A ) ) ( a ( .r ` ( R |`s A ) ) b ) ) ) ) |
| 88 | 1 12 83 87 | syl3anbrc | |- ( ( R e. oRing /\ ( R |`s A ) e. Ring ) -> ( R |`s A ) e. oRing ) |