This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isorng.0 | |- B = ( Base ` R ) |
|
| isorng.1 | |- .0. = ( 0g ` R ) |
||
| isorng.2 | |- .x. = ( .r ` R ) |
||
| isorng.3 | |- .<_ = ( le ` R ) |
||
| Assertion | isorng | |- ( R e. oRing <-> ( R e. Ring /\ R e. oGrp /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isorng.0 | |- B = ( Base ` R ) |
|
| 2 | isorng.1 | |- .0. = ( 0g ` R ) |
|
| 3 | isorng.2 | |- .x. = ( .r ` R ) |
|
| 4 | isorng.3 | |- .<_ = ( le ` R ) |
|
| 5 | elin | |- ( R e. ( Ring i^i oGrp ) <-> ( R e. Ring /\ R e. oGrp ) ) |
|
| 6 | 5 | anbi1i | |- ( ( R e. ( Ring i^i oGrp ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) <-> ( ( R e. Ring /\ R e. oGrp ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
| 7 | fvexd | |- ( r = R -> ( .r ` r ) e. _V ) |
|
| 8 | simpr | |- ( ( r = R /\ t = ( .r ` r ) ) -> t = ( .r ` r ) ) |
|
| 9 | simpl | |- ( ( r = R /\ t = ( .r ` r ) ) -> r = R ) |
|
| 10 | 9 | fveq2d | |- ( ( r = R /\ t = ( .r ` r ) ) -> ( .r ` r ) = ( .r ` R ) ) |
| 11 | 10 3 | eqtr4di | |- ( ( r = R /\ t = ( .r ` r ) ) -> ( .r ` r ) = .x. ) |
| 12 | 8 11 | eqtrd | |- ( ( r = R /\ t = ( .r ` r ) ) -> t = .x. ) |
| 13 | 12 | oveqd | |- ( ( r = R /\ t = ( .r ` r ) ) -> ( a t b ) = ( a .x. b ) ) |
| 14 | 13 | breq2d | |- ( ( r = R /\ t = ( .r ` r ) ) -> ( .0. l ( a t b ) <-> .0. l ( a .x. b ) ) ) |
| 15 | 14 | imbi2d | |- ( ( r = R /\ t = ( .r ` r ) ) -> ( ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) ) ) |
| 16 | 15 | 2ralbidv | |- ( ( r = R /\ t = ( .r ` r ) ) -> ( A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) ) ) |
| 17 | 16 | sbcbidv | |- ( ( r = R /\ t = ( .r ` r ) ) -> ( [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) ) ) |
| 18 | 7 17 | sbcied | |- ( r = R -> ( [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) ) ) |
| 19 | fvexd | |- ( r = R -> ( Base ` r ) e. _V ) |
|
| 20 | simpr | |- ( ( r = R /\ v = ( Base ` r ) ) -> v = ( Base ` r ) ) |
|
| 21 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 22 | 21 1 | eqtr4di | |- ( r = R -> ( Base ` r ) = B ) |
| 23 | 22 | adantr | |- ( ( r = R /\ v = ( Base ` r ) ) -> ( Base ` r ) = B ) |
| 24 | 20 23 | eqtrd | |- ( ( r = R /\ v = ( Base ` r ) ) -> v = B ) |
| 25 | raleq | |- ( v = B -> ( A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
|
| 26 | 25 | raleqbi1dv | |- ( v = B -> ( A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
| 27 | 24 26 | syl | |- ( ( r = R /\ v = ( Base ` r ) ) -> ( A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
| 28 | 27 | sbcbidv | |- ( ( r = R /\ v = ( Base ` r ) ) -> ( [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
| 29 | 28 | sbcbidv | |- ( ( r = R /\ v = ( Base ` r ) ) -> ( [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
| 30 | 29 | sbcbidv | |- ( ( r = R /\ v = ( Base ` r ) ) -> ( [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
| 31 | 19 30 | sbcied | |- ( r = R -> ( [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
| 32 | fvexd | |- ( r = R -> ( 0g ` r ) e. _V ) |
|
| 33 | simpr | |- ( ( r = R /\ z = ( 0g ` r ) ) -> z = ( 0g ` r ) ) |
|
| 34 | fveq2 | |- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
|
| 35 | 34 2 | eqtr4di | |- ( r = R -> ( 0g ` r ) = .0. ) |
| 36 | 35 | adantr | |- ( ( r = R /\ z = ( 0g ` r ) ) -> ( 0g ` r ) = .0. ) |
| 37 | 33 36 | eqtrd | |- ( ( r = R /\ z = ( 0g ` r ) ) -> z = .0. ) |
| 38 | 37 | breq1d | |- ( ( r = R /\ z = ( 0g ` r ) ) -> ( z l a <-> .0. l a ) ) |
| 39 | 37 | breq1d | |- ( ( r = R /\ z = ( 0g ` r ) ) -> ( z l b <-> .0. l b ) ) |
| 40 | 38 39 | anbi12d | |- ( ( r = R /\ z = ( 0g ` r ) ) -> ( ( z l a /\ z l b ) <-> ( .0. l a /\ .0. l b ) ) ) |
| 41 | 37 | breq1d | |- ( ( r = R /\ z = ( 0g ` r ) ) -> ( z l ( a t b ) <-> .0. l ( a t b ) ) ) |
| 42 | 40 41 | imbi12d | |- ( ( r = R /\ z = ( 0g ` r ) ) -> ( ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
| 43 | 42 | 2ralbidv | |- ( ( r = R /\ z = ( 0g ` r ) ) -> ( A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
| 44 | 43 | sbcbidv | |- ( ( r = R /\ z = ( 0g ` r ) ) -> ( [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
| 45 | 44 | sbcbidv | |- ( ( r = R /\ z = ( 0g ` r ) ) -> ( [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
| 46 | 32 45 | sbcied | |- ( r = R -> ( [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
| 47 | 31 46 | bitr2d | |- ( r = R -> ( [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
| 48 | fvexd | |- ( r = R -> ( le ` r ) e. _V ) |
|
| 49 | simpr | |- ( ( r = R /\ l = ( le ` r ) ) -> l = ( le ` r ) ) |
|
| 50 | simpl | |- ( ( r = R /\ l = ( le ` r ) ) -> r = R ) |
|
| 51 | 50 | fveq2d | |- ( ( r = R /\ l = ( le ` r ) ) -> ( le ` r ) = ( le ` R ) ) |
| 52 | 51 4 | eqtr4di | |- ( ( r = R /\ l = ( le ` r ) ) -> ( le ` r ) = .<_ ) |
| 53 | 49 52 | eqtrd | |- ( ( r = R /\ l = ( le ` r ) ) -> l = .<_ ) |
| 54 | 53 | breqd | |- ( ( r = R /\ l = ( le ` r ) ) -> ( .0. l a <-> .0. .<_ a ) ) |
| 55 | 53 | breqd | |- ( ( r = R /\ l = ( le ` r ) ) -> ( .0. l b <-> .0. .<_ b ) ) |
| 56 | 54 55 | anbi12d | |- ( ( r = R /\ l = ( le ` r ) ) -> ( ( .0. l a /\ .0. l b ) <-> ( .0. .<_ a /\ .0. .<_ b ) ) ) |
| 57 | 53 | breqd | |- ( ( r = R /\ l = ( le ` r ) ) -> ( .0. l ( a .x. b ) <-> .0. .<_ ( a .x. b ) ) ) |
| 58 | 56 57 | imbi12d | |- ( ( r = R /\ l = ( le ` r ) ) -> ( ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) <-> ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
| 59 | 58 | 2ralbidv | |- ( ( r = R /\ l = ( le ` r ) ) -> ( A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) <-> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
| 60 | 48 59 | sbcied | |- ( r = R -> ( [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) <-> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
| 61 | 18 47 60 | 3bitr3d | |- ( r = R -> ( [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
| 62 | df-orng | |- oRing = { r e. ( Ring i^i oGrp ) | [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) } |
|
| 63 | 61 62 | elrab2 | |- ( R e. oRing <-> ( R e. ( Ring i^i oGrp ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
| 64 | df-3an | |- ( ( R e. Ring /\ R e. oGrp /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) <-> ( ( R e. Ring /\ R e. oGrp ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
|
| 65 | 6 63 64 | 3bitr4i | |- ( R e. oRing <-> ( R e. Ring /\ R e. oGrp /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |