This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subofld | |- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> ( F |`s A ) e. oField ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> ( F |`s A ) e. Field ) |
|
| 2 | isofld | |- ( F e. oField <-> ( F e. Field /\ F e. oRing ) ) |
|
| 3 | 2 | simprbi | |- ( F e. oField -> F e. oRing ) |
| 4 | 3 | adantr | |- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> F e. oRing ) |
| 5 | isfld | |- ( ( F |`s A ) e. Field <-> ( ( F |`s A ) e. DivRing /\ ( F |`s A ) e. CRing ) ) |
|
| 6 | 5 | simprbi | |- ( ( F |`s A ) e. Field -> ( F |`s A ) e. CRing ) |
| 7 | crngring | |- ( ( F |`s A ) e. CRing -> ( F |`s A ) e. Ring ) |
|
| 8 | 1 6 7 | 3syl | |- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> ( F |`s A ) e. Ring ) |
| 9 | suborng | |- ( ( F e. oRing /\ ( F |`s A ) e. Ring ) -> ( F |`s A ) e. oRing ) |
|
| 10 | 4 8 9 | syl2anc | |- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> ( F |`s A ) e. oRing ) |
| 11 | isofld | |- ( ( F |`s A ) e. oField <-> ( ( F |`s A ) e. Field /\ ( F |`s A ) e. oRing ) ) |
|
| 12 | 1 10 11 | sylanbrc | |- ( ( F e. oField /\ ( F |`s A ) e. Field ) -> ( F |`s A ) e. oField ) |