This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orngmul.0 | |- B = ( Base ` R ) |
|
| orngmul.1 | |- .<_ = ( le ` R ) |
||
| orngmul.2 | |- .0. = ( 0g ` R ) |
||
| orngmul.3 | |- .x. = ( .r ` R ) |
||
| Assertion | orngmul | |- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> .0. .<_ ( X .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orngmul.0 | |- B = ( Base ` R ) |
|
| 2 | orngmul.1 | |- .<_ = ( le ` R ) |
|
| 3 | orngmul.2 | |- .0. = ( 0g ` R ) |
|
| 4 | orngmul.3 | |- .x. = ( .r ` R ) |
|
| 5 | simp2r | |- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> .0. .<_ X ) |
|
| 6 | simp3r | |- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> .0. .<_ Y ) |
|
| 7 | simp2l | |- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> X e. B ) |
|
| 8 | simp3l | |- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> Y e. B ) |
|
| 9 | 1 3 4 2 | isorng | |- ( R e. oRing <-> ( R e. Ring /\ R e. oGrp /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
| 10 | 9 | simp3bi | |- ( R e. oRing -> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) |
| 11 | 10 | 3ad2ant1 | |- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) |
| 12 | breq2 | |- ( a = X -> ( .0. .<_ a <-> .0. .<_ X ) ) |
|
| 13 | 12 | anbi1d | |- ( a = X -> ( ( .0. .<_ a /\ .0. .<_ b ) <-> ( .0. .<_ X /\ .0. .<_ b ) ) ) |
| 14 | oveq1 | |- ( a = X -> ( a .x. b ) = ( X .x. b ) ) |
|
| 15 | 14 | breq2d | |- ( a = X -> ( .0. .<_ ( a .x. b ) <-> .0. .<_ ( X .x. b ) ) ) |
| 16 | 13 15 | imbi12d | |- ( a = X -> ( ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) <-> ( ( .0. .<_ X /\ .0. .<_ b ) -> .0. .<_ ( X .x. b ) ) ) ) |
| 17 | breq2 | |- ( b = Y -> ( .0. .<_ b <-> .0. .<_ Y ) ) |
|
| 18 | 17 | anbi2d | |- ( b = Y -> ( ( .0. .<_ X /\ .0. .<_ b ) <-> ( .0. .<_ X /\ .0. .<_ Y ) ) ) |
| 19 | oveq2 | |- ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) |
|
| 20 | 19 | breq2d | |- ( b = Y -> ( .0. .<_ ( X .x. b ) <-> .0. .<_ ( X .x. Y ) ) ) |
| 21 | 18 20 | imbi12d | |- ( b = Y -> ( ( ( .0. .<_ X /\ .0. .<_ b ) -> .0. .<_ ( X .x. b ) ) <-> ( ( .0. .<_ X /\ .0. .<_ Y ) -> .0. .<_ ( X .x. Y ) ) ) ) |
| 22 | 16 21 | rspc2va | |- ( ( ( X e. B /\ Y e. B ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) -> ( ( .0. .<_ X /\ .0. .<_ Y ) -> .0. .<_ ( X .x. Y ) ) ) |
| 23 | 7 8 11 22 | syl21anc | |- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> ( ( .0. .<_ X /\ .0. .<_ Y ) -> .0. .<_ ( X .x. Y ) ) ) |
| 24 | 5 6 23 | mp2and | |- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> .0. .<_ ( X .x. Y ) ) |