This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt1res.2 | |- K = ( J |`t Y ) |
|
| cnmpt1res.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| cnmpt1res.5 | |- ( ph -> Y C_ X ) |
||
| cnmpt1res.6 | |- ( ph -> ( x e. X |-> A ) e. ( J Cn L ) ) |
||
| Assertion | cnmpt1res | |- ( ph -> ( x e. Y |-> A ) e. ( K Cn L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1res.2 | |- K = ( J |`t Y ) |
|
| 2 | cnmpt1res.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | cnmpt1res.5 | |- ( ph -> Y C_ X ) |
|
| 4 | cnmpt1res.6 | |- ( ph -> ( x e. X |-> A ) e. ( J Cn L ) ) |
|
| 5 | 3 | resmptd | |- ( ph -> ( ( x e. X |-> A ) |` Y ) = ( x e. Y |-> A ) ) |
| 6 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 7 | 2 6 | syl | |- ( ph -> X = U. J ) |
| 8 | 3 7 | sseqtrd | |- ( ph -> Y C_ U. J ) |
| 9 | eqid | |- U. J = U. J |
|
| 10 | 9 | cnrest | |- ( ( ( x e. X |-> A ) e. ( J Cn L ) /\ Y C_ U. J ) -> ( ( x e. X |-> A ) |` Y ) e. ( ( J |`t Y ) Cn L ) ) |
| 11 | 4 8 10 | syl2anc | |- ( ph -> ( ( x e. X |-> A ) |` Y ) e. ( ( J |`t Y ) Cn L ) ) |
| 12 | 1 | oveq1i | |- ( K Cn L ) = ( ( J |`t Y ) Cn L ) |
| 13 | 11 12 | eleqtrrdi | |- ( ph -> ( ( x e. X |-> A ) |` Y ) e. ( K Cn L ) ) |
| 14 | 5 13 | eqeltrrd | |- ( ph -> ( x e. Y |-> A ) e. ( K Cn L ) ) |