This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climdivf.1 | |- F/ k ph |
|
| climdivf.2 | |- F/_ k F |
||
| climdivf.3 | |- F/_ k G |
||
| climdivf.4 | |- F/_ k H |
||
| climdivf.5 | |- Z = ( ZZ>= ` M ) |
||
| climdivf.6 | |- ( ph -> M e. ZZ ) |
||
| climdivf.7 | |- ( ph -> F ~~> A ) |
||
| climdivf.8 | |- ( ph -> H e. X ) |
||
| climdivf.9 | |- ( ph -> G ~~> B ) |
||
| climdivf.10 | |- ( ph -> B =/= 0 ) |
||
| climdivf.11 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| climdivf.12 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
||
| climdivf.13 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) / ( G ` k ) ) ) |
||
| Assertion | climdivf | |- ( ph -> H ~~> ( A / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climdivf.1 | |- F/ k ph |
|
| 2 | climdivf.2 | |- F/_ k F |
|
| 3 | climdivf.3 | |- F/_ k G |
|
| 4 | climdivf.4 | |- F/_ k H |
|
| 5 | climdivf.5 | |- Z = ( ZZ>= ` M ) |
|
| 6 | climdivf.6 | |- ( ph -> M e. ZZ ) |
|
| 7 | climdivf.7 | |- ( ph -> F ~~> A ) |
|
| 8 | climdivf.8 | |- ( ph -> H e. X ) |
|
| 9 | climdivf.9 | |- ( ph -> G ~~> B ) |
|
| 10 | climdivf.10 | |- ( ph -> B =/= 0 ) |
|
| 11 | climdivf.11 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 12 | climdivf.12 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
|
| 13 | climdivf.13 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) / ( G ` k ) ) ) |
|
| 14 | nfmpt1 | |- F/_ k ( k e. Z |-> ( 1 / ( G ` k ) ) ) |
|
| 15 | simpr | |- ( ( ph /\ k e. Z ) -> k e. Z ) |
|
| 16 | 12 | eldifad | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 17 | eldifsni | |- ( ( G ` k ) e. ( CC \ { 0 } ) -> ( G ` k ) =/= 0 ) |
|
| 18 | 12 17 | syl | |- ( ( ph /\ k e. Z ) -> ( G ` k ) =/= 0 ) |
| 19 | 16 18 | reccld | |- ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) e. CC ) |
| 20 | eqid | |- ( k e. Z |-> ( 1 / ( G ` k ) ) ) = ( k e. Z |-> ( 1 / ( G ` k ) ) ) |
|
| 21 | 20 | fvmpt2 | |- ( ( k e. Z /\ ( 1 / ( G ` k ) ) e. CC ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
| 22 | 15 19 21 | syl2anc | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
| 23 | 5 | fvexi | |- Z e. _V |
| 24 | 23 | mptex | |- ( k e. Z |-> ( 1 / ( G ` k ) ) ) e. _V |
| 25 | 24 | a1i | |- ( ph -> ( k e. Z |-> ( 1 / ( G ` k ) ) ) e. _V ) |
| 26 | 1 3 14 5 6 9 10 12 22 25 | climrecf | |- ( ph -> ( k e. Z |-> ( 1 / ( G ` k ) ) ) ~~> ( 1 / B ) ) |
| 27 | 22 19 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) e. CC ) |
| 28 | 11 16 18 | divrecd | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) / ( G ` k ) ) = ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) ) |
| 29 | 22 | eqcomd | |- ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) = ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) |
| 30 | 29 | oveq2d | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) = ( ( F ` k ) x. ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) ) |
| 31 | 13 28 30 | 3eqtrd | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) ) |
| 32 | 1 2 14 4 5 6 7 8 26 11 27 31 | climmulf | |- ( ph -> H ~~> ( A x. ( 1 / B ) ) ) |
| 33 | climcl | |- ( F ~~> A -> A e. CC ) |
|
| 34 | 7 33 | syl | |- ( ph -> A e. CC ) |
| 35 | climcl | |- ( G ~~> B -> B e. CC ) |
|
| 36 | 9 35 | syl | |- ( ph -> B e. CC ) |
| 37 | 34 36 10 | divrecd | |- ( ph -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 38 | 32 37 | breqtrrd | |- ( ph -> H ~~> ( A / B ) ) |