This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climexp.1 | |- F/ k ph |
|
| climexp.2 | |- F/_ k F |
||
| climexp.3 | |- F/_ k H |
||
| climexp.4 | |- Z = ( ZZ>= ` M ) |
||
| climexp.5 | |- ( ph -> M e. ZZ ) |
||
| climexp.6 | |- ( ph -> F : Z --> CC ) |
||
| climexp.7 | |- ( ph -> F ~~> A ) |
||
| climexp.8 | |- ( ph -> N e. NN0 ) |
||
| climexp.9 | |- ( ph -> H e. V ) |
||
| climexp.10 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) ^ N ) ) |
||
| Assertion | climexp | |- ( ph -> H ~~> ( A ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climexp.1 | |- F/ k ph |
|
| 2 | climexp.2 | |- F/_ k F |
|
| 3 | climexp.3 | |- F/_ k H |
|
| 4 | climexp.4 | |- Z = ( ZZ>= ` M ) |
|
| 5 | climexp.5 | |- ( ph -> M e. ZZ ) |
|
| 6 | climexp.6 | |- ( ph -> F : Z --> CC ) |
|
| 7 | climexp.7 | |- ( ph -> F ~~> A ) |
|
| 8 | climexp.8 | |- ( ph -> N e. NN0 ) |
|
| 9 | climexp.9 | |- ( ph -> H e. V ) |
|
| 10 | climexp.10 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) ^ N ) ) |
|
| 11 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 12 | 11 | expcn | |- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 13 | 8 12 | syl | |- ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 | 11 | cncfcn1 | |- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 15 | 13 14 | eleqtrrdi | |- ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
| 16 | climcl | |- ( F ~~> A -> A e. CC ) |
|
| 17 | 7 16 | syl | |- ( ph -> A e. CC ) |
| 18 | 4 5 15 6 7 17 | climcncf | |- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) ~~> ( ( x e. CC |-> ( x ^ N ) ) ` A ) ) |
| 19 | eqidd | |- ( ph -> ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> ( x ^ N ) ) ) |
|
| 20 | simpr | |- ( ( ph /\ x = A ) -> x = A ) |
|
| 21 | 20 | oveq1d | |- ( ( ph /\ x = A ) -> ( x ^ N ) = ( A ^ N ) ) |
| 22 | 17 8 | expcld | |- ( ph -> ( A ^ N ) e. CC ) |
| 23 | 19 21 17 22 | fvmptd | |- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) ` A ) = ( A ^ N ) ) |
| 24 | 18 23 | breqtrd | |- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) ~~> ( A ^ N ) ) |
| 25 | cnex | |- CC e. _V |
|
| 26 | 25 | mptex | |- ( x e. CC |-> ( x ^ N ) ) e. _V |
| 27 | 4 | fvexi | |- Z e. _V |
| 28 | fex | |- ( ( F : Z --> CC /\ Z e. _V ) -> F e. _V ) |
|
| 29 | 6 27 28 | sylancl | |- ( ph -> F e. _V ) |
| 30 | coexg | |- ( ( ( x e. CC |-> ( x ^ N ) ) e. _V /\ F e. _V ) -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) e. _V ) |
|
| 31 | 26 29 30 | sylancr | |- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) e. _V ) |
| 32 | eqidd | |- ( ( ph /\ j e. Z ) -> ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> ( x ^ N ) ) ) |
|
| 33 | simpr | |- ( ( ( ph /\ j e. Z ) /\ x = ( F ` j ) ) -> x = ( F ` j ) ) |
|
| 34 | 33 | oveq1d | |- ( ( ( ph /\ j e. Z ) /\ x = ( F ` j ) ) -> ( x ^ N ) = ( ( F ` j ) ^ N ) ) |
| 35 | 6 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) |
| 36 | 8 | adantr | |- ( ( ph /\ j e. Z ) -> N e. NN0 ) |
| 37 | 35 36 | expcld | |- ( ( ph /\ j e. Z ) -> ( ( F ` j ) ^ N ) e. CC ) |
| 38 | 32 34 35 37 | fvmptd | |- ( ( ph /\ j e. Z ) -> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` j ) ) = ( ( F ` j ) ^ N ) ) |
| 39 | fvco3 | |- ( ( F : Z --> CC /\ j e. Z ) -> ( ( ( x e. CC |-> ( x ^ N ) ) o. F ) ` j ) = ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` j ) ) ) |
|
| 40 | 6 39 | sylan | |- ( ( ph /\ j e. Z ) -> ( ( ( x e. CC |-> ( x ^ N ) ) o. F ) ` j ) = ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` j ) ) ) |
| 41 | nfv | |- F/ k j e. Z |
|
| 42 | 1 41 | nfan | |- F/ k ( ph /\ j e. Z ) |
| 43 | nfcv | |- F/_ k j |
|
| 44 | 3 43 | nffv | |- F/_ k ( H ` j ) |
| 45 | 2 43 | nffv | |- F/_ k ( F ` j ) |
| 46 | nfcv | |- F/_ k ^ |
|
| 47 | nfcv | |- F/_ k N |
|
| 48 | 45 46 47 | nfov | |- F/_ k ( ( F ` j ) ^ N ) |
| 49 | 44 48 | nfeq | |- F/ k ( H ` j ) = ( ( F ` j ) ^ N ) |
| 50 | 42 49 | nfim | |- F/ k ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) ^ N ) ) |
| 51 | eleq1w | |- ( k = j -> ( k e. Z <-> j e. Z ) ) |
|
| 52 | 51 | anbi2d | |- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
| 53 | fveq2 | |- ( k = j -> ( H ` k ) = ( H ` j ) ) |
|
| 54 | fveq2 | |- ( k = j -> ( F ` k ) = ( F ` j ) ) |
|
| 55 | 54 | oveq1d | |- ( k = j -> ( ( F ` k ) ^ N ) = ( ( F ` j ) ^ N ) ) |
| 56 | 53 55 | eqeq12d | |- ( k = j -> ( ( H ` k ) = ( ( F ` k ) ^ N ) <-> ( H ` j ) = ( ( F ` j ) ^ N ) ) ) |
| 57 | 52 56 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) ^ N ) ) <-> ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) ^ N ) ) ) ) |
| 58 | 50 57 10 | chvarfv | |- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) ^ N ) ) |
| 59 | 38 40 58 | 3eqtr4rd | |- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( ( x e. CC |-> ( x ^ N ) ) o. F ) ` j ) ) |
| 60 | 4 9 31 5 59 | climeq | |- ( ph -> ( H ~~> ( A ^ N ) <-> ( ( x e. CC |-> ( x ^ N ) ) o. F ) ~~> ( A ^ N ) ) ) |
| 61 | 24 60 | mpbird | |- ( ph -> H ~~> ( A ^ N ) ) |