This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for srgbinomlem . (Contributed by AV, 23-Aug-2019) (Proof shortened by AV, 27-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgbinom.s | |- S = ( Base ` R ) |
|
| srgbinom.m | |- .X. = ( .r ` R ) |
||
| srgbinom.t | |- .x. = ( .g ` R ) |
||
| srgbinom.a | |- .+ = ( +g ` R ) |
||
| srgbinom.g | |- G = ( mulGrp ` R ) |
||
| srgbinom.e | |- .^ = ( .g ` G ) |
||
| srgbinomlem.r | |- ( ph -> R e. SRing ) |
||
| srgbinomlem.a | |- ( ph -> A e. S ) |
||
| srgbinomlem.b | |- ( ph -> B e. S ) |
||
| srgbinomlem.c | |- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
||
| srgbinomlem.n | |- ( ph -> N e. NN0 ) |
||
| srgbinomlem.i | |- ( ps -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
||
| Assertion | srgbinomlem3 | |- ( ( ph /\ ps ) -> ( ( N .^ ( A .+ B ) ) .X. A ) = ( R gsum ( k e. ( 0 ... ( N + 1 ) ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgbinom.s | |- S = ( Base ` R ) |
|
| 2 | srgbinom.m | |- .X. = ( .r ` R ) |
|
| 3 | srgbinom.t | |- .x. = ( .g ` R ) |
|
| 4 | srgbinom.a | |- .+ = ( +g ` R ) |
|
| 5 | srgbinom.g | |- G = ( mulGrp ` R ) |
|
| 6 | srgbinom.e | |- .^ = ( .g ` G ) |
|
| 7 | srgbinomlem.r | |- ( ph -> R e. SRing ) |
|
| 8 | srgbinomlem.a | |- ( ph -> A e. S ) |
|
| 9 | srgbinomlem.b | |- ( ph -> B e. S ) |
|
| 10 | srgbinomlem.c | |- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
|
| 11 | srgbinomlem.n | |- ( ph -> N e. NN0 ) |
|
| 12 | srgbinomlem.i | |- ( ps -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
|
| 13 | 12 | adantl | |- ( ( ph /\ ps ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 14 | 13 | oveq1d | |- ( ( ph /\ ps ) -> ( ( N .^ ( A .+ B ) ) .X. A ) = ( ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) .X. A ) ) |
| 15 | srgcmn | |- ( R e. SRing -> R e. CMnd ) |
|
| 16 | 7 15 | syl | |- ( ph -> R e. CMnd ) |
| 17 | simpl | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ph ) |
|
| 18 | elfzelz | |- ( k e. ( 0 ... ( N + 1 ) ) -> k e. ZZ ) |
|
| 19 | bccl | |- ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) |
|
| 20 | 11 18 19 | syl2an | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( N _C k ) e. NN0 ) |
| 21 | fznn0sub | |- ( k e. ( 0 ... ( N + 1 ) ) -> ( ( N + 1 ) - k ) e. NN0 ) |
|
| 22 | 21 | adantl | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N + 1 ) - k ) e. NN0 ) |
| 23 | elfznn0 | |- ( k e. ( 0 ... ( N + 1 ) ) -> k e. NN0 ) |
|
| 24 | 23 | adantl | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. NN0 ) |
| 25 | 1 2 3 4 5 6 7 8 9 10 11 | srgbinomlem2 | |- ( ( ph /\ ( ( N _C k ) e. NN0 /\ ( ( N + 1 ) - k ) e. NN0 /\ k e. NN0 ) ) -> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) e. S ) |
| 26 | 17 20 22 24 25 | syl13anc | |- ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) e. S ) |
| 27 | 1 4 16 11 26 | gsummptfzsplit | |- ( ph -> ( R gsum ( k e. ( 0 ... ( N + 1 ) ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) .+ ( R gsum ( k e. { ( N + 1 ) } |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 28 | srgmnd | |- ( R e. SRing -> R e. Mnd ) |
|
| 29 | 7 28 | syl | |- ( ph -> R e. Mnd ) |
| 30 | ovexd | |- ( ph -> ( N + 1 ) e. _V ) |
|
| 31 | id | |- ( ph -> ph ) |
|
| 32 | 11 | nn0zd | |- ( ph -> N e. ZZ ) |
| 33 | 32 | peano2zd | |- ( ph -> ( N + 1 ) e. ZZ ) |
| 34 | bccl | |- ( ( N e. NN0 /\ ( N + 1 ) e. ZZ ) -> ( N _C ( N + 1 ) ) e. NN0 ) |
|
| 35 | 11 33 34 | syl2anc | |- ( ph -> ( N _C ( N + 1 ) ) e. NN0 ) |
| 36 | 11 | nn0cnd | |- ( ph -> N e. CC ) |
| 37 | peano2cn | |- ( N e. CC -> ( N + 1 ) e. CC ) |
|
| 38 | 36 37 | syl | |- ( ph -> ( N + 1 ) e. CC ) |
| 39 | 38 | subidd | |- ( ph -> ( ( N + 1 ) - ( N + 1 ) ) = 0 ) |
| 40 | 0nn0 | |- 0 e. NN0 |
|
| 41 | 39 40 | eqeltrdi | |- ( ph -> ( ( N + 1 ) - ( N + 1 ) ) e. NN0 ) |
| 42 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 43 | 11 42 | syl | |- ( ph -> ( N + 1 ) e. NN0 ) |
| 44 | 1 2 3 4 5 6 7 8 9 10 11 | srgbinomlem2 | |- ( ( ph /\ ( ( N _C ( N + 1 ) ) e. NN0 /\ ( ( N + 1 ) - ( N + 1 ) ) e. NN0 /\ ( N + 1 ) e. NN0 ) ) -> ( ( N _C ( N + 1 ) ) .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) e. S ) |
| 45 | 31 35 41 43 44 | syl13anc | |- ( ph -> ( ( N _C ( N + 1 ) ) .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) e. S ) |
| 46 | oveq2 | |- ( k = ( N + 1 ) -> ( N _C k ) = ( N _C ( N + 1 ) ) ) |
|
| 47 | oveq2 | |- ( k = ( N + 1 ) -> ( ( N + 1 ) - k ) = ( ( N + 1 ) - ( N + 1 ) ) ) |
|
| 48 | 47 | oveq1d | |- ( k = ( N + 1 ) -> ( ( ( N + 1 ) - k ) .^ A ) = ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) ) |
| 49 | oveq1 | |- ( k = ( N + 1 ) -> ( k .^ B ) = ( ( N + 1 ) .^ B ) ) |
|
| 50 | 48 49 | oveq12d | |- ( k = ( N + 1 ) -> ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) |
| 51 | 46 50 | oveq12d | |- ( k = ( N + 1 ) -> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( N _C ( N + 1 ) ) .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) ) |
| 52 | 1 51 | gsumsn | |- ( ( R e. Mnd /\ ( N + 1 ) e. _V /\ ( ( N _C ( N + 1 ) ) .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) e. S ) -> ( R gsum ( k e. { ( N + 1 ) } |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( ( N _C ( N + 1 ) ) .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) ) |
| 53 | 29 30 45 52 | syl3anc | |- ( ph -> ( R gsum ( k e. { ( N + 1 ) } |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( ( N _C ( N + 1 ) ) .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) ) |
| 54 | 11 | nn0red | |- ( ph -> N e. RR ) |
| 55 | 54 | ltp1d | |- ( ph -> N < ( N + 1 ) ) |
| 56 | 55 | olcd | |- ( ph -> ( ( N + 1 ) < 0 \/ N < ( N + 1 ) ) ) |
| 57 | bcval4 | |- ( ( N e. NN0 /\ ( N + 1 ) e. ZZ /\ ( ( N + 1 ) < 0 \/ N < ( N + 1 ) ) ) -> ( N _C ( N + 1 ) ) = 0 ) |
|
| 58 | 11 33 56 57 | syl3anc | |- ( ph -> ( N _C ( N + 1 ) ) = 0 ) |
| 59 | 58 | oveq1d | |- ( ph -> ( ( N _C ( N + 1 ) ) .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) = ( 0 .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) ) |
| 60 | 1 2 3 4 5 6 7 8 9 10 11 | srgbinomlem1 | |- ( ( ph /\ ( ( ( N + 1 ) - ( N + 1 ) ) e. NN0 /\ ( N + 1 ) e. NN0 ) ) -> ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) e. S ) |
| 61 | 31 41 43 60 | syl12anc | |- ( ph -> ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) e. S ) |
| 62 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 63 | 1 62 3 | mulg0 | |- ( ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) e. S -> ( 0 .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) = ( 0g ` R ) ) |
| 64 | 61 63 | syl | |- ( ph -> ( 0 .x. ( ( ( ( N + 1 ) - ( N + 1 ) ) .^ A ) .X. ( ( N + 1 ) .^ B ) ) ) = ( 0g ` R ) ) |
| 65 | 53 59 64 | 3eqtrd | |- ( ph -> ( R gsum ( k e. { ( N + 1 ) } |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 0g ` R ) ) |
| 66 | 65 | oveq2d | |- ( ph -> ( ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) .+ ( R gsum ( k e. { ( N + 1 ) } |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) = ( ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) .+ ( 0g ` R ) ) ) |
| 67 | fzfid | |- ( ph -> ( 0 ... N ) e. Fin ) |
|
| 68 | simpl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ph ) |
|
| 69 | bccl2 | |- ( k e. ( 0 ... N ) -> ( N _C k ) e. NN ) |
|
| 70 | 69 | nnnn0d | |- ( k e. ( 0 ... N ) -> ( N _C k ) e. NN0 ) |
| 71 | 70 | adantl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. NN0 ) |
| 72 | fzelp1 | |- ( k e. ( 0 ... N ) -> k e. ( 0 ... ( N + 1 ) ) ) |
|
| 73 | 72 22 | sylan2 | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N + 1 ) - k ) e. NN0 ) |
| 74 | elfznn0 | |- ( k e. ( 0 ... N ) -> k e. NN0 ) |
|
| 75 | 74 | adantl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 76 | 68 71 73 75 25 | syl13anc | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) e. S ) |
| 77 | 76 | ralrimiva | |- ( ph -> A. k e. ( 0 ... N ) ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) e. S ) |
| 78 | 1 16 67 77 | gsummptcl | |- ( ph -> ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) e. S ) |
| 79 | 1 4 62 | mndrid | |- ( ( R e. Mnd /\ ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) e. S ) -> ( ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) .+ ( 0g ` R ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 80 | 29 78 79 | syl2anc | |- ( ph -> ( ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) .+ ( 0g ` R ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 81 | 27 66 80 | 3eqtrd | |- ( ph -> ( R gsum ( k e. ( 0 ... ( N + 1 ) ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 82 | 7 | adantr | |- ( ( ph /\ k e. ( 0 ... N ) ) -> R e. SRing ) |
| 83 | 8 | adantr | |- ( ( ph /\ k e. ( 0 ... N ) ) -> A e. S ) |
| 84 | 9 | adantr | |- ( ( ph /\ k e. ( 0 ... N ) ) -> B e. S ) |
| 85 | 10 | adantr | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( A .X. B ) = ( B .X. A ) ) |
| 86 | fznn0sub | |- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
|
| 87 | 86 | adantl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( N - k ) e. NN0 ) |
| 88 | 1 2 5 6 82 83 84 75 85 87 3 71 | srgpcomppsc | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) .X. A ) = ( ( N _C k ) .x. ( ( ( ( N - k ) + 1 ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 89 | 36 | adantr | |- ( ( ph /\ k e. ( 0 ... N ) ) -> N e. CC ) |
| 90 | 1cnd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> 1 e. CC ) |
|
| 91 | elfzelz | |- ( k e. ( 0 ... N ) -> k e. ZZ ) |
|
| 92 | 91 | zcnd | |- ( k e. ( 0 ... N ) -> k e. CC ) |
| 93 | 92 | adantl | |- ( ( ph /\ k e. ( 0 ... N ) ) -> k e. CC ) |
| 94 | 89 90 93 | addsubd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N + 1 ) - k ) = ( ( N - k ) + 1 ) ) |
| 95 | 94 | oveq1d | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( N + 1 ) - k ) .^ A ) = ( ( ( N - k ) + 1 ) .^ A ) ) |
| 96 | 95 | oveq1d | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( ( N - k ) + 1 ) .^ A ) .X. ( k .^ B ) ) ) |
| 97 | 96 | oveq2d | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( N _C k ) .x. ( ( ( ( N - k ) + 1 ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 98 | 88 97 | eqtr4d | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) .X. A ) = ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 99 | 98 | mpteq2dva | |- ( ph -> ( k e. ( 0 ... N ) |-> ( ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) .X. A ) ) = ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 100 | 99 | oveq2d | |- ( ph -> ( R gsum ( k e. ( 0 ... N ) |-> ( ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) .X. A ) ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 101 | ovexd | |- ( ph -> ( 0 ... N ) e. _V ) |
|
| 102 | 1 2 3 4 5 6 7 8 9 10 11 | srgbinomlem2 | |- ( ( ph /\ ( ( N _C k ) e. NN0 /\ ( N - k ) e. NN0 /\ k e. NN0 ) ) -> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) e. S ) |
| 103 | 68 71 87 75 102 | syl13anc | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) e. S ) |
| 104 | eqid | |- ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
|
| 105 | ovexd | |- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) e. _V ) |
|
| 106 | fvexd | |- ( ph -> ( 0g ` R ) e. _V ) |
|
| 107 | 104 67 105 106 | fsuppmptdm | |- ( ph -> ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) finSupp ( 0g ` R ) ) |
| 108 | 1 62 4 2 7 101 8 103 107 | srgsummulcr | |- ( ph -> ( R gsum ( k e. ( 0 ... N ) |-> ( ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) .X. A ) ) ) = ( ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) .X. A ) ) |
| 109 | 81 100 108 | 3eqtr2rd | |- ( ph -> ( ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) .X. A ) = ( R gsum ( k e. ( 0 ... ( N + 1 ) ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 110 | 109 | adantr | |- ( ( ph /\ ps ) -> ( ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) .X. A ) = ( R gsum ( k e. ( 0 ... ( N + 1 ) ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 111 | 14 110 | eqtrd | |- ( ( ph /\ ps ) -> ( ( N .^ ( A .+ B ) ) .X. A ) = ( R gsum ( k e. ( 0 ... ( N + 1 ) ) |-> ( ( N _C k ) .x. ( ( ( ( N + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |