This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite semiring sum multiplied by a constant, analogous to gsummulc1 . (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgsummulcr.b | |- B = ( Base ` R ) |
|
| srgsummulcr.z | |- .0. = ( 0g ` R ) |
||
| srgsummulcr.p | |- .+ = ( +g ` R ) |
||
| srgsummulcr.t | |- .x. = ( .r ` R ) |
||
| srgsummulcr.r | |- ( ph -> R e. SRing ) |
||
| srgsummulcr.a | |- ( ph -> A e. V ) |
||
| srgsummulcr.y | |- ( ph -> Y e. B ) |
||
| srgsummulcr.x | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| srgsummulcr.n | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
||
| Assertion | srgsummulcr | |- ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( ( R gsum ( k e. A |-> X ) ) .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgsummulcr.b | |- B = ( Base ` R ) |
|
| 2 | srgsummulcr.z | |- .0. = ( 0g ` R ) |
|
| 3 | srgsummulcr.p | |- .+ = ( +g ` R ) |
|
| 4 | srgsummulcr.t | |- .x. = ( .r ` R ) |
|
| 5 | srgsummulcr.r | |- ( ph -> R e. SRing ) |
|
| 6 | srgsummulcr.a | |- ( ph -> A e. V ) |
|
| 7 | srgsummulcr.y | |- ( ph -> Y e. B ) |
|
| 8 | srgsummulcr.x | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 9 | srgsummulcr.n | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
|
| 10 | srgcmn | |- ( R e. SRing -> R e. CMnd ) |
|
| 11 | 5 10 | syl | |- ( ph -> R e. CMnd ) |
| 12 | srgmnd | |- ( R e. SRing -> R e. Mnd ) |
|
| 13 | 5 12 | syl | |- ( ph -> R e. Mnd ) |
| 14 | 1 4 | srgrmhm | |- ( ( R e. SRing /\ Y e. B ) -> ( x e. B |-> ( x .x. Y ) ) e. ( R MndHom R ) ) |
| 15 | 5 7 14 | syl2anc | |- ( ph -> ( x e. B |-> ( x .x. Y ) ) e. ( R MndHom R ) ) |
| 16 | oveq1 | |- ( x = X -> ( x .x. Y ) = ( X .x. Y ) ) |
|
| 17 | oveq1 | |- ( x = ( R gsum ( k e. A |-> X ) ) -> ( x .x. Y ) = ( ( R gsum ( k e. A |-> X ) ) .x. Y ) ) |
|
| 18 | 1 2 11 13 6 15 8 9 16 17 | gsummhm2 | |- ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( ( R gsum ( k e. A |-> X ) ) .x. Y ) ) |