This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgpcomp.s | |- S = ( Base ` R ) |
|
| srgpcomp.m | |- .X. = ( .r ` R ) |
||
| srgpcomp.g | |- G = ( mulGrp ` R ) |
||
| srgpcomp.e | |- .^ = ( .g ` G ) |
||
| srgpcomp.r | |- ( ph -> R e. SRing ) |
||
| srgpcomp.a | |- ( ph -> A e. S ) |
||
| srgpcomp.b | |- ( ph -> B e. S ) |
||
| srgpcomp.k | |- ( ph -> K e. NN0 ) |
||
| srgpcomp.c | |- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
||
| srgpcompp.n | |- ( ph -> N e. NN0 ) |
||
| srgpcomppsc.t | |- .x. = ( .g ` R ) |
||
| srgpcomppsc.c | |- ( ph -> C e. NN0 ) |
||
| Assertion | srgpcomppsc | |- ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( C .x. ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.s | |- S = ( Base ` R ) |
|
| 2 | srgpcomp.m | |- .X. = ( .r ` R ) |
|
| 3 | srgpcomp.g | |- G = ( mulGrp ` R ) |
|
| 4 | srgpcomp.e | |- .^ = ( .g ` G ) |
|
| 5 | srgpcomp.r | |- ( ph -> R e. SRing ) |
|
| 6 | srgpcomp.a | |- ( ph -> A e. S ) |
|
| 7 | srgpcomp.b | |- ( ph -> B e. S ) |
|
| 8 | srgpcomp.k | |- ( ph -> K e. NN0 ) |
|
| 9 | srgpcomp.c | |- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
|
| 10 | srgpcompp.n | |- ( ph -> N e. NN0 ) |
|
| 11 | srgpcomppsc.t | |- .x. = ( .g ` R ) |
|
| 12 | srgpcomppsc.c | |- ( ph -> C e. NN0 ) |
|
| 13 | 3 1 | mgpbas | |- S = ( Base ` G ) |
| 14 | 3 | srgmgp | |- ( R e. SRing -> G e. Mnd ) |
| 15 | 5 14 | syl | |- ( ph -> G e. Mnd ) |
| 16 | 13 4 15 10 6 | mulgnn0cld | |- ( ph -> ( N .^ A ) e. S ) |
| 17 | 13 4 15 8 7 | mulgnn0cld | |- ( ph -> ( K .^ B ) e. S ) |
| 18 | 1 11 2 | srgmulgass | |- ( ( R e. SRing /\ ( C e. NN0 /\ ( N .^ A ) e. S /\ ( K .^ B ) e. S ) ) -> ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) = ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) ) |
| 19 | 18 | eqcomd | |- ( ( R e. SRing /\ ( C e. NN0 /\ ( N .^ A ) e. S /\ ( K .^ B ) e. S ) ) -> ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) = ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) ) |
| 20 | 5 12 16 17 19 | syl13anc | |- ( ph -> ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) = ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) ) |
| 21 | 20 | oveq1d | |- ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) .X. A ) ) |
| 22 | srgmnd | |- ( R e. SRing -> R e. Mnd ) |
|
| 23 | 5 22 | syl | |- ( ph -> R e. Mnd ) |
| 24 | 1 11 23 12 16 | mulgnn0cld | |- ( ph -> ( C .x. ( N .^ A ) ) e. S ) |
| 25 | 1 2 | srgass | |- ( ( R e. SRing /\ ( ( C .x. ( N .^ A ) ) e. S /\ ( K .^ B ) e. S /\ A e. S ) ) -> ( ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) .X. A ) = ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 26 | 5 24 17 6 25 | syl13anc | |- ( ph -> ( ( ( C .x. ( N .^ A ) ) .X. ( K .^ B ) ) .X. A ) = ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 27 | 21 26 | eqtrd | |- ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 28 | 1 2 | srgcl | |- ( ( R e. SRing /\ ( K .^ B ) e. S /\ A e. S ) -> ( ( K .^ B ) .X. A ) e. S ) |
| 29 | 5 17 6 28 | syl3anc | |- ( ph -> ( ( K .^ B ) .X. A ) e. S ) |
| 30 | 1 11 2 | srgmulgass | |- ( ( R e. SRing /\ ( C e. NN0 /\ ( N .^ A ) e. S /\ ( ( K .^ B ) .X. A ) e. S ) ) -> ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) = ( C .x. ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) ) |
| 31 | 5 12 16 29 30 | syl13anc | |- ( ph -> ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) = ( C .x. ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) ) |
| 32 | 1 2 | srgass | |- ( ( R e. SRing /\ ( ( N .^ A ) e. S /\ ( K .^ B ) e. S /\ A e. S ) ) -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) = ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 33 | 5 16 17 6 32 | syl13anc | |- ( ph -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) = ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) |
| 34 | 33 | eqcomd | |- ( ph -> ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) = ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) |
| 35 | 34 | oveq2d | |- ( ph -> ( C .x. ( ( N .^ A ) .X. ( ( K .^ B ) .X. A ) ) ) = ( C .x. ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) ) |
| 36 | 31 35 | eqtrd | |- ( ph -> ( ( C .x. ( N .^ A ) ) .X. ( ( K .^ B ) .X. A ) ) = ( C .x. ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) ) |
| 37 | 1 2 3 4 5 6 7 8 9 10 | srgpcompp | |- ( ph -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) = ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) |
| 38 | 37 | oveq2d | |- ( ph -> ( C .x. ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) ) = ( C .x. ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) ) |
| 39 | 27 36 38 | 3eqtrd | |- ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) = ( C .x. ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) ) |