This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for srgbinomlem . (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgbinom.s | |- S = ( Base ` R ) |
|
| srgbinom.m | |- .X. = ( .r ` R ) |
||
| srgbinom.t | |- .x. = ( .g ` R ) |
||
| srgbinom.a | |- .+ = ( +g ` R ) |
||
| srgbinom.g | |- G = ( mulGrp ` R ) |
||
| srgbinom.e | |- .^ = ( .g ` G ) |
||
| srgbinomlem.r | |- ( ph -> R e. SRing ) |
||
| srgbinomlem.a | |- ( ph -> A e. S ) |
||
| srgbinomlem.b | |- ( ph -> B e. S ) |
||
| srgbinomlem.c | |- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
||
| srgbinomlem.n | |- ( ph -> N e. NN0 ) |
||
| Assertion | srgbinomlem2 | |- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> ( C .x. ( ( D .^ A ) .X. ( E .^ B ) ) ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgbinom.s | |- S = ( Base ` R ) |
|
| 2 | srgbinom.m | |- .X. = ( .r ` R ) |
|
| 3 | srgbinom.t | |- .x. = ( .g ` R ) |
|
| 4 | srgbinom.a | |- .+ = ( +g ` R ) |
|
| 5 | srgbinom.g | |- G = ( mulGrp ` R ) |
|
| 6 | srgbinom.e | |- .^ = ( .g ` G ) |
|
| 7 | srgbinomlem.r | |- ( ph -> R e. SRing ) |
|
| 8 | srgbinomlem.a | |- ( ph -> A e. S ) |
|
| 9 | srgbinomlem.b | |- ( ph -> B e. S ) |
|
| 10 | srgbinomlem.c | |- ( ph -> ( A .X. B ) = ( B .X. A ) ) |
|
| 11 | srgbinomlem.n | |- ( ph -> N e. NN0 ) |
|
| 12 | srgmnd | |- ( R e. SRing -> R e. Mnd ) |
|
| 13 | 7 12 | syl | |- ( ph -> R e. Mnd ) |
| 14 | 13 | adantr | |- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> R e. Mnd ) |
| 15 | simpr1 | |- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> C e. NN0 ) |
|
| 16 | 1 2 3 4 5 6 7 8 9 10 11 | srgbinomlem1 | |- ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> ( ( D .^ A ) .X. ( E .^ B ) ) e. S ) |
| 17 | 16 | 3adantr1 | |- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> ( ( D .^ A ) .X. ( E .^ B ) ) e. S ) |
| 18 | 1 3 14 15 17 | mulgnn0cld | |- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> ( C .x. ( ( D .^ A ) .X. ( E .^ B ) ) ) e. S ) |