This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | srgcmn | |- ( R e. SRing -> R e. CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 2 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 3 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 6 | 1 2 3 4 5 | issrg | |- ( R e. SRing <-> ( R e. CMnd /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) ( A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) /\ ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) ) ) |
| 7 | 6 | simp1bi | |- ( R e. SRing -> R e. CMnd ) |