This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sralmod0.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| sralmod0.z | |- ( ph -> .0. = ( 0g ` W ) ) |
||
| sralmod0.s | |- ( ph -> S C_ ( Base ` W ) ) |
||
| Assertion | sralmod0 | |- ( ph -> .0. = ( 0g ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sralmod0.a | |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
|
| 2 | sralmod0.z | |- ( ph -> .0. = ( 0g ` W ) ) |
|
| 3 | sralmod0.s | |- ( ph -> S C_ ( Base ` W ) ) |
|
| 4 | eqidd | |- ( ph -> ( Base ` W ) = ( Base ` W ) ) |
|
| 5 | 1 3 | srabase | |- ( ph -> ( Base ` W ) = ( Base ` A ) ) |
| 6 | 1 3 | sraaddg | |- ( ph -> ( +g ` W ) = ( +g ` A ) ) |
| 7 | 6 | oveqdr | |- ( ( ph /\ ( a e. ( Base ` W ) /\ b e. ( Base ` W ) ) ) -> ( a ( +g ` W ) b ) = ( a ( +g ` A ) b ) ) |
| 8 | 4 5 7 | grpidpropd | |- ( ph -> ( 0g ` W ) = ( 0g ` A ) ) |
| 9 | 2 8 | eqtrd | |- ( ph -> .0. = ( 0g ` A ) ) |