This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sraassa as of 21-Mar-2025. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sraassa.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| Assertion | sraassaOLD | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraassa.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| 2 | 1 | a1i | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A = ( ( subringAlg ` W ) ` S ) ) |
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 4 | 3 | subrgss | |- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
| 5 | 4 | adantl | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S C_ ( Base ` W ) ) |
| 6 | 2 5 | srabase | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Base ` A ) ) |
| 7 | 2 5 | srasca | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( W |`s S ) = ( Scalar ` A ) ) |
| 8 | eqid | |- ( W |`s S ) = ( W |`s S ) |
|
| 9 | 8 | subrgbas | |- ( S e. ( SubRing ` W ) -> S = ( Base ` ( W |`s S ) ) ) |
| 10 | 9 | adantl | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S = ( Base ` ( W |`s S ) ) ) |
| 11 | 2 5 | sravsca | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( .r ` W ) = ( .s ` A ) ) |
| 12 | 2 5 | sramulr | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( .r ` W ) = ( .r ` A ) ) |
| 13 | 1 | sralmod | |- ( S e. ( SubRing ` W ) -> A e. LMod ) |
| 14 | 13 | adantl | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. LMod ) |
| 15 | crngring | |- ( W e. CRing -> W e. Ring ) |
|
| 16 | 15 | adantr | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> W e. Ring ) |
| 17 | eqidd | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Base ` W ) ) |
|
| 18 | 2 5 | sraaddg | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( +g ` W ) = ( +g ` A ) ) |
| 19 | 18 | oveqdr | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` A ) y ) ) |
| 20 | 12 | oveqdr | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( x ( .r ` A ) y ) ) |
| 21 | 17 6 19 20 | ringpropd | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( W e. Ring <-> A e. Ring ) ) |
| 22 | 16 21 | mpbid | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. Ring ) |
| 23 | 16 | adantr | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> W e. Ring ) |
| 24 | 5 | adantr | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> S C_ ( Base ` W ) ) |
| 25 | simpr1 | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. S ) |
|
| 26 | 24 25 | sseldd | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
| 27 | simpr2 | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
|
| 28 | simpr3 | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> z e. ( Base ` W ) ) |
|
| 29 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 30 | 3 29 | ringass | |- ( ( W e. Ring /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 31 | 23 26 27 28 30 | syl13anc | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .r ` W ) y ) ( .r ` W ) z ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 32 | eqid | |- ( mulGrp ` W ) = ( mulGrp ` W ) |
|
| 33 | 32 | crngmgp | |- ( W e. CRing -> ( mulGrp ` W ) e. CMnd ) |
| 34 | 33 | ad2antrr | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( mulGrp ` W ) e. CMnd ) |
| 35 | 32 3 | mgpbas | |- ( Base ` W ) = ( Base ` ( mulGrp ` W ) ) |
| 36 | 32 29 | mgpplusg | |- ( .r ` W ) = ( +g ` ( mulGrp ` W ) ) |
| 37 | 35 36 | cmn12 | |- ( ( ( mulGrp ` W ) e. CMnd /\ ( y e. ( Base ` W ) /\ x e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .r ` W ) z ) ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 38 | 34 27 26 28 37 | syl13anc | |- ( ( ( W e. CRing /\ S e. ( SubRing ` W ) ) /\ ( x e. S /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .r ` W ) z ) ) = ( x ( .r ` W ) ( y ( .r ` W ) z ) ) ) |
| 39 | 6 7 10 11 12 14 22 31 38 | isassad | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. AssAlg ) |