This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sraassa as of 21-Mar-2025. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sraassa.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| Assertion | sraassaOLD | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraassa.a | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 4 | 3 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 6 | 2 5 | srabase | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 7 | 2 5 | srasca | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 8 | eqid | ⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) | |
| 9 | 8 | subrgbas | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
| 11 | 2 5 | sravsca | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 12 | 2 5 | sramulr | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
| 13 | 1 | sralmod | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ LMod ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ LMod ) |
| 15 | crngring | ⊢ ( 𝑊 ∈ CRing → 𝑊 ∈ Ring ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑊 ∈ Ring ) |
| 17 | eqidd | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
| 18 | 2 5 | sraaddg | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |
| 19 | 18 | oveqdr | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
| 20 | 12 | oveqdr | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
| 21 | 17 6 19 20 | ringpropd | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ∈ Ring ↔ 𝐴 ∈ Ring ) ) |
| 22 | 16 21 | mpbid | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ Ring ) |
| 23 | 16 | adantr | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ Ring ) |
| 24 | 5 | adantr | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 25 | simpr1 | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ 𝑆 ) | |
| 26 | 24 25 | sseldd | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 27 | simpr2 | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 28 | simpr3 | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) | |
| 29 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 30 | 3 29 | ringass | ⊢ ( ( 𝑊 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 31 | 23 26 27 28 30 | syl13anc | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 32 | eqid | ⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) | |
| 33 | 32 | crngmgp | ⊢ ( 𝑊 ∈ CRing → ( mulGrp ‘ 𝑊 ) ∈ CMnd ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( mulGrp ‘ 𝑊 ) ∈ CMnd ) |
| 35 | 32 3 | mgpbas | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( mulGrp ‘ 𝑊 ) ) |
| 36 | 32 29 | mgpplusg | ⊢ ( .r ‘ 𝑊 ) = ( +g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 37 | 35 36 | cmn12 | ⊢ ( ( ( mulGrp ‘ 𝑊 ) ∈ CMnd ∧ ( 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 38 | 34 27 26 28 37 | syl13anc | ⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 39 | 6 7 10 11 12 14 22 31 38 | isassad | ⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ AssAlg ) |