This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtneglem | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
|
| 3 | recn | |- ( ( sqrt ` A ) e. RR -> ( sqrt ` A ) e. CC ) |
|
| 4 | 2 3 | syl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. CC ) |
| 5 | sqmul | |- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) ) |
|
| 6 | 1 4 5 | sylancr | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) ) |
| 7 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 8 | 7 | a1i | |- ( ( A e. RR /\ 0 <_ A ) -> ( _i ^ 2 ) = -u 1 ) |
| 9 | resqrtth | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
|
| 10 | 8 9 | oveq12d | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( _i ^ 2 ) x. ( ( sqrt ` A ) ^ 2 ) ) = ( -u 1 x. A ) ) |
| 11 | recn | |- ( A e. RR -> A e. CC ) |
|
| 12 | 11 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
| 13 | 12 | mulm1d | |- ( ( A e. RR /\ 0 <_ A ) -> ( -u 1 x. A ) = -u A ) |
| 14 | 6 10 13 | 3eqtrd | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A ) |
| 15 | renegcl | |- ( ( sqrt ` A ) e. RR -> -u ( sqrt ` A ) e. RR ) |
|
| 16 | 0re | |- 0 e. RR |
|
| 17 | reim0 | |- ( -u ( sqrt ` A ) e. RR -> ( Im ` -u ( sqrt ` A ) ) = 0 ) |
|
| 18 | recn | |- ( -u ( sqrt ` A ) e. RR -> -u ( sqrt ` A ) e. CC ) |
|
| 19 | imre | |- ( -u ( sqrt ` A ) e. CC -> ( Im ` -u ( sqrt ` A ) ) = ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
|
| 20 | 18 19 | syl | |- ( -u ( sqrt ` A ) e. RR -> ( Im ` -u ( sqrt ` A ) ) = ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
| 21 | 17 20 | eqtr3d | |- ( -u ( sqrt ` A ) e. RR -> 0 = ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
| 22 | eqle | |- ( ( 0 e. RR /\ 0 = ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) -> 0 <_ ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
|
| 23 | 16 21 22 | sylancr | |- ( -u ( sqrt ` A ) e. RR -> 0 <_ ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
| 24 | 2 15 23 | 3syl | |- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) ) |
| 25 | mul2neg | |- ( ( _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( -u _i x. -u ( sqrt ` A ) ) = ( _i x. ( sqrt ` A ) ) ) |
|
| 26 | 1 4 25 | sylancr | |- ( ( A e. RR /\ 0 <_ A ) -> ( -u _i x. -u ( sqrt ` A ) ) = ( _i x. ( sqrt ` A ) ) ) |
| 27 | 26 | fveq2d | |- ( ( A e. RR /\ 0 <_ A ) -> ( Re ` ( -u _i x. -u ( sqrt ` A ) ) ) = ( Re ` ( _i x. ( sqrt ` A ) ) ) ) |
| 28 | 24 27 | breqtrd | |- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) ) |
| 29 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 30 | 29 | oveq1i | |- ( ( _i x. _i ) x. ( sqrt ` A ) ) = ( -u 1 x. ( sqrt ` A ) ) |
| 31 | mulass | |- ( ( _i e. CC /\ _i e. CC /\ ( sqrt ` A ) e. CC ) -> ( ( _i x. _i ) x. ( sqrt ` A ) ) = ( _i x. ( _i x. ( sqrt ` A ) ) ) ) |
|
| 32 | 1 1 31 | mp3an12 | |- ( ( sqrt ` A ) e. CC -> ( ( _i x. _i ) x. ( sqrt ` A ) ) = ( _i x. ( _i x. ( sqrt ` A ) ) ) ) |
| 33 | mulm1 | |- ( ( sqrt ` A ) e. CC -> ( -u 1 x. ( sqrt ` A ) ) = -u ( sqrt ` A ) ) |
|
| 34 | 30 32 33 | 3eqtr3a | |- ( ( sqrt ` A ) e. CC -> ( _i x. ( _i x. ( sqrt ` A ) ) ) = -u ( sqrt ` A ) ) |
| 35 | 4 34 | syl | |- ( ( A e. RR /\ 0 <_ A ) -> ( _i x. ( _i x. ( sqrt ` A ) ) ) = -u ( sqrt ` A ) ) |
| 36 | sqrtge0 | |- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( sqrt ` A ) ) |
|
| 37 | le0neg2 | |- ( ( sqrt ` A ) e. RR -> ( 0 <_ ( sqrt ` A ) <-> -u ( sqrt ` A ) <_ 0 ) ) |
|
| 38 | lenlt | |- ( ( -u ( sqrt ` A ) e. RR /\ 0 e. RR ) -> ( -u ( sqrt ` A ) <_ 0 <-> -. 0 < -u ( sqrt ` A ) ) ) |
|
| 39 | 15 16 38 | sylancl | |- ( ( sqrt ` A ) e. RR -> ( -u ( sqrt ` A ) <_ 0 <-> -. 0 < -u ( sqrt ` A ) ) ) |
| 40 | 37 39 | bitrd | |- ( ( sqrt ` A ) e. RR -> ( 0 <_ ( sqrt ` A ) <-> -. 0 < -u ( sqrt ` A ) ) ) |
| 41 | 2 40 | syl | |- ( ( A e. RR /\ 0 <_ A ) -> ( 0 <_ ( sqrt ` A ) <-> -. 0 < -u ( sqrt ` A ) ) ) |
| 42 | 36 41 | mpbid | |- ( ( A e. RR /\ 0 <_ A ) -> -. 0 < -u ( sqrt ` A ) ) |
| 43 | elrp | |- ( -u ( sqrt ` A ) e. RR+ <-> ( -u ( sqrt ` A ) e. RR /\ 0 < -u ( sqrt ` A ) ) ) |
|
| 44 | 2 15 | syl | |- ( ( A e. RR /\ 0 <_ A ) -> -u ( sqrt ` A ) e. RR ) |
| 45 | 44 | biantrurd | |- ( ( A e. RR /\ 0 <_ A ) -> ( 0 < -u ( sqrt ` A ) <-> ( -u ( sqrt ` A ) e. RR /\ 0 < -u ( sqrt ` A ) ) ) ) |
| 46 | 43 45 | bitr4id | |- ( ( A e. RR /\ 0 <_ A ) -> ( -u ( sqrt ` A ) e. RR+ <-> 0 < -u ( sqrt ` A ) ) ) |
| 47 | 42 46 | mtbird | |- ( ( A e. RR /\ 0 <_ A ) -> -. -u ( sqrt ` A ) e. RR+ ) |
| 48 | 35 47 | eqneltrd | |- ( ( A e. RR /\ 0 <_ A ) -> -. ( _i x. ( _i x. ( sqrt ` A ) ) ) e. RR+ ) |
| 49 | df-nel | |- ( ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ <-> -. ( _i x. ( _i x. ( sqrt ` A ) ) ) e. RR+ ) |
|
| 50 | 48 49 | sylibr | |- ( ( A e. RR /\ 0 <_ A ) -> ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) |
| 51 | 14 28 50 | 3jca | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( _i x. ( sqrt ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` A ) ) ) e/ RR+ ) ) |