This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unidirectional form of dvdssq . (Contributed by Scott Fenton, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssqim | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. k e. ZZ ( k x. M ) = N ) ) |
|
| 2 | zsqcl | |- ( k e. ZZ -> ( k ^ 2 ) e. ZZ ) |
|
| 3 | zsqcl | |- ( M e. ZZ -> ( M ^ 2 ) e. ZZ ) |
|
| 4 | dvdsmul2 | |- ( ( ( k ^ 2 ) e. ZZ /\ ( M ^ 2 ) e. ZZ ) -> ( M ^ 2 ) || ( ( k ^ 2 ) x. ( M ^ 2 ) ) ) |
|
| 5 | 2 3 4 | syl2anr | |- ( ( M e. ZZ /\ k e. ZZ ) -> ( M ^ 2 ) || ( ( k ^ 2 ) x. ( M ^ 2 ) ) ) |
| 6 | zcn | |- ( k e. ZZ -> k e. CC ) |
|
| 7 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 8 | sqmul | |- ( ( k e. CC /\ M e. CC ) -> ( ( k x. M ) ^ 2 ) = ( ( k ^ 2 ) x. ( M ^ 2 ) ) ) |
|
| 9 | 6 7 8 | syl2anr | |- ( ( M e. ZZ /\ k e. ZZ ) -> ( ( k x. M ) ^ 2 ) = ( ( k ^ 2 ) x. ( M ^ 2 ) ) ) |
| 10 | 5 9 | breqtrrd | |- ( ( M e. ZZ /\ k e. ZZ ) -> ( M ^ 2 ) || ( ( k x. M ) ^ 2 ) ) |
| 11 | oveq1 | |- ( ( k x. M ) = N -> ( ( k x. M ) ^ 2 ) = ( N ^ 2 ) ) |
|
| 12 | 11 | breq2d | |- ( ( k x. M ) = N -> ( ( M ^ 2 ) || ( ( k x. M ) ^ 2 ) <-> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 13 | 10 12 | syl5ibcom | |- ( ( M e. ZZ /\ k e. ZZ ) -> ( ( k x. M ) = N -> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 14 | 13 | rexlimdva | |- ( M e. ZZ -> ( E. k e. ZZ ( k x. M ) = N -> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 15 | 14 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( E. k e. ZZ ( k x. M ) = N -> ( M ^ 2 ) || ( N ^ 2 ) ) ) |
| 16 | 1 15 | sylbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> ( M ^ 2 ) || ( N ^ 2 ) ) ) |