This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A and B are relatively prime, then so are A ^ N and B ^ N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rppwr | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. NN ) |
|
| 2 | simp3 | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN ) |
|
| 3 | 2 | nnnn0d | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN0 ) |
| 4 | 1 3 | nnexpcld | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A ^ N ) e. NN ) |
| 5 | simp2 | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> B e. NN ) |
|
| 6 | 4 5 2 | 3jca | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A ^ N ) e. NN /\ B e. NN /\ N e. NN ) ) |
| 7 | rplpwr | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) ) |
|
| 8 | rprpwr | |- ( ( ( A ^ N ) e. NN /\ B e. NN /\ N e. NN ) -> ( ( ( A ^ N ) gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |
|
| 9 | 6 7 8 | sylsyld | |- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |