This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzass4 | |- ( ( B e. ( A ... D ) /\ C e. ( B ... D ) ) <-> ( B e. ( A ... C ) /\ C e. ( A ... D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) -> B e. ( ZZ>= ` A ) ) |
|
| 2 | simprl | |- ( ( ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) -> C e. ( ZZ>= ` B ) ) |
|
| 3 | 1 2 | jca | |- ( ( ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) -> ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) ) |
| 4 | uztrn | |- ( ( C e. ( ZZ>= ` B ) /\ B e. ( ZZ>= ` A ) ) -> C e. ( ZZ>= ` A ) ) |
|
| 5 | 4 | ancoms | |- ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) -> C e. ( ZZ>= ` A ) ) |
| 6 | 5 | ad2ant2r | |- ( ( ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) -> C e. ( ZZ>= ` A ) ) |
| 7 | simprr | |- ( ( ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) -> D e. ( ZZ>= ` C ) ) |
|
| 8 | 3 6 7 | jca32 | |- ( ( ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) -> ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) ) |
| 9 | simpll | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) -> B e. ( ZZ>= ` A ) ) |
|
| 10 | uztrn | |- ( ( D e. ( ZZ>= ` C ) /\ C e. ( ZZ>= ` B ) ) -> D e. ( ZZ>= ` B ) ) |
|
| 11 | 10 | ancoms | |- ( ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) -> D e. ( ZZ>= ` B ) ) |
| 12 | 11 | ad2ant2l | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) -> D e. ( ZZ>= ` B ) ) |
| 13 | 9 12 | jca | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) -> ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) ) |
| 14 | simplr | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) -> C e. ( ZZ>= ` B ) ) |
|
| 15 | simprr | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) -> D e. ( ZZ>= ` C ) ) |
|
| 16 | 13 14 15 | jca32 | |- ( ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) -> ( ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) ) |
| 17 | 8 16 | impbii | |- ( ( ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) <-> ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) ) |
| 18 | elfzuzb | |- ( B e. ( A ... D ) <-> ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) ) |
|
| 19 | elfzuzb | |- ( C e. ( B ... D ) <-> ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) |
|
| 20 | 18 19 | anbi12i | |- ( ( B e. ( A ... D ) /\ C e. ( B ... D ) ) <-> ( ( B e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` B ) /\ D e. ( ZZ>= ` C ) ) ) ) |
| 21 | elfzuzb | |- ( B e. ( A ... C ) <-> ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) ) |
|
| 22 | elfzuzb | |- ( C e. ( A ... D ) <-> ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) |
|
| 23 | 21 22 | anbi12i | |- ( ( B e. ( A ... C ) /\ C e. ( A ... D ) ) <-> ( ( B e. ( ZZ>= ` A ) /\ C e. ( ZZ>= ` B ) ) /\ ( C e. ( ZZ>= ` A ) /\ D e. ( ZZ>= ` C ) ) ) ) |
| 24 | 17 20 23 | 3bitr4i | |- ( ( B e. ( A ... D ) /\ C e. ( B ... D ) ) <-> ( B e. ( A ... C ) /\ C e. ( A ... D ) ) ) |