This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo function I is an endofunction on NN0 . (Contributed by AV, 12-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| Assertion | smndex1ibas | |- I e. ( Base ` M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | eqid | |- ( x e. NN0 |-> ( x mod N ) ) = ( x e. NN0 |-> ( x mod N ) ) |
|
| 5 | nn0z | |- ( x e. NN0 -> x e. ZZ ) |
|
| 6 | 2 | a1i | |- ( x e. NN0 -> N e. NN ) |
| 7 | 5 6 | zmodcld | |- ( x e. NN0 -> ( x mod N ) e. NN0 ) |
| 8 | 4 7 | fmpti | |- ( x e. NN0 |-> ( x mod N ) ) : NN0 --> NN0 |
| 9 | nn0ex | |- NN0 e. _V |
|
| 10 | 9 9 | elmap | |- ( ( x e. NN0 |-> ( x mod N ) ) e. ( NN0 ^m NN0 ) <-> ( x e. NN0 |-> ( x mod N ) ) : NN0 --> NN0 ) |
| 11 | 8 10 | mpbir | |- ( x e. NN0 |-> ( x mod N ) ) e. ( NN0 ^m NN0 ) |
| 12 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 13 | 1 12 | efmndbas | |- ( Base ` M ) = ( NN0 ^m NN0 ) |
| 14 | 11 3 13 | 3eltr4i | |- I e. ( Base ` M ) |