This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a constant function ( GK ) with another endofunction on NN0 results in ( GK ) itself. (Contributed by AV, 14-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| Assertion | smndex1gid | |- ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) -> ( ( G ` K ) o. F ) = ( G ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | 4 | a1i | |- ( K e. ( 0 ..^ N ) -> G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) ) |
| 6 | id | |- ( n = K -> n = K ) |
|
| 7 | 6 | mpteq2dv | |- ( n = K -> ( x e. NN0 |-> n ) = ( x e. NN0 |-> K ) ) |
| 8 | 7 | adantl | |- ( ( K e. ( 0 ..^ N ) /\ n = K ) -> ( x e. NN0 |-> n ) = ( x e. NN0 |-> K ) ) |
| 9 | id | |- ( K e. ( 0 ..^ N ) -> K e. ( 0 ..^ N ) ) |
|
| 10 | nn0ex | |- NN0 e. _V |
|
| 11 | 10 | mptex | |- ( x e. NN0 |-> K ) e. _V |
| 12 | 11 | a1i | |- ( K e. ( 0 ..^ N ) -> ( x e. NN0 |-> K ) e. _V ) |
| 13 | 5 8 9 12 | fvmptd | |- ( K e. ( 0 ..^ N ) -> ( G ` K ) = ( x e. NN0 |-> K ) ) |
| 14 | 13 | adantl | |- ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) -> ( G ` K ) = ( x e. NN0 |-> K ) ) |
| 15 | 14 | adantr | |- ( ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) /\ y e. NN0 ) -> ( G ` K ) = ( x e. NN0 |-> K ) ) |
| 16 | eqidd | |- ( ( ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) /\ y e. NN0 ) /\ x = ( F ` y ) ) -> K = K ) |
|
| 17 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 18 | 1 17 | efmndbasf | |- ( F e. ( Base ` M ) -> F : NN0 --> NN0 ) |
| 19 | ffvelcdm | |- ( ( F : NN0 --> NN0 /\ y e. NN0 ) -> ( F ` y ) e. NN0 ) |
|
| 20 | 19 | ex | |- ( F : NN0 --> NN0 -> ( y e. NN0 -> ( F ` y ) e. NN0 ) ) |
| 21 | 18 20 | syl | |- ( F e. ( Base ` M ) -> ( y e. NN0 -> ( F ` y ) e. NN0 ) ) |
| 22 | 21 | adantr | |- ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) -> ( y e. NN0 -> ( F ` y ) e. NN0 ) ) |
| 23 | 22 | imp | |- ( ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) /\ y e. NN0 ) -> ( F ` y ) e. NN0 ) |
| 24 | simplr | |- ( ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) /\ y e. NN0 ) -> K e. ( 0 ..^ N ) ) |
|
| 25 | 15 16 23 24 | fvmptd | |- ( ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) /\ y e. NN0 ) -> ( ( G ` K ) ` ( F ` y ) ) = K ) |
| 26 | 25 | mpteq2dva | |- ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) -> ( y e. NN0 |-> ( ( G ` K ) ` ( F ` y ) ) ) = ( y e. NN0 |-> K ) ) |
| 27 | 1 2 3 4 | smndex1gbas | |- ( K e. ( 0 ..^ N ) -> ( G ` K ) e. ( Base ` M ) ) |
| 28 | 1 17 | efmndbasf | |- ( ( G ` K ) e. ( Base ` M ) -> ( G ` K ) : NN0 --> NN0 ) |
| 29 | 27 28 | syl | |- ( K e. ( 0 ..^ N ) -> ( G ` K ) : NN0 --> NN0 ) |
| 30 | fcompt | |- ( ( ( G ` K ) : NN0 --> NN0 /\ F : NN0 --> NN0 ) -> ( ( G ` K ) o. F ) = ( y e. NN0 |-> ( ( G ` K ) ` ( F ` y ) ) ) ) |
|
| 31 | 29 18 30 | syl2anr | |- ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) -> ( ( G ` K ) o. F ) = ( y e. NN0 |-> ( ( G ` K ) ` ( F ` y ) ) ) ) |
| 32 | eqidd | |- ( x = y -> K = K ) |
|
| 33 | 32 | cbvmptv | |- ( x e. NN0 |-> K ) = ( y e. NN0 |-> K ) |
| 34 | 7 33 | eqtrdi | |- ( n = K -> ( x e. NN0 |-> n ) = ( y e. NN0 |-> K ) ) |
| 35 | 34 | adantl | |- ( ( K e. ( 0 ..^ N ) /\ n = K ) -> ( x e. NN0 |-> n ) = ( y e. NN0 |-> K ) ) |
| 36 | 10 | mptex | |- ( y e. NN0 |-> K ) e. _V |
| 37 | 36 | a1i | |- ( K e. ( 0 ..^ N ) -> ( y e. NN0 |-> K ) e. _V ) |
| 38 | 5 35 9 37 | fvmptd | |- ( K e. ( 0 ..^ N ) -> ( G ` K ) = ( y e. NN0 |-> K ) ) |
| 39 | 38 | adantl | |- ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) -> ( G ` K ) = ( y e. NN0 |-> K ) ) |
| 40 | 26 31 39 | 3eqtr4d | |- ( ( F e. ( Base ` M ) /\ K e. ( 0 ..^ N ) ) -> ( ( G ` K ) o. F ) = ( G ` K ) ) |