This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) . (Contributed by AV, 12-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
||
| smndex1mgm.s | |- S = ( M |`s B ) |
||
| Assertion | smndex1bas | |- ( Base ` S ) = B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
|
| 6 | smndex1mgm.s | |- S = ( M |`s B ) |
|
| 7 | 1 2 3 4 5 | smndex1basss | |- B C_ ( Base ` M ) |
| 8 | dfss | |- ( B C_ ( Base ` M ) <-> B = ( B i^i ( Base ` M ) ) ) |
|
| 9 | 7 8 | mpbi | |- B = ( B i^i ( Base ` M ) ) |
| 10 | snex | |- { I } e. _V |
|
| 11 | ovex | |- ( 0 ..^ N ) e. _V |
|
| 12 | snex | |- { ( G ` n ) } e. _V |
|
| 13 | 11 12 | iunex | |- U_ n e. ( 0 ..^ N ) { ( G ` n ) } e. _V |
| 14 | 10 13 | unex | |- ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) e. _V |
| 15 | 5 14 | eqeltri | |- B e. _V |
| 16 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 17 | 6 16 | ressbas | |- ( B e. _V -> ( B i^i ( Base ` M ) ) = ( Base ` S ) ) |
| 18 | 15 17 | ax-mp | |- ( B i^i ( Base ` M ) ) = ( Base ` S ) |
| 19 | 9 18 | eqtr2i | |- ( Base ` S ) = B |