This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo function I and the constant functions ( GK ) are endofunctions on NN0 . (Contributed by AV, 12-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
||
| Assertion | smndex1basss | |- B C_ ( Base ` M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
|
| 6 | 5 | eleq2i | |- ( b e. B <-> b e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) ) |
| 7 | fveq2 | |- ( n = k -> ( G ` n ) = ( G ` k ) ) |
|
| 8 | 7 | sneqd | |- ( n = k -> { ( G ` n ) } = { ( G ` k ) } ) |
| 9 | 8 | cbviunv | |- U_ n e. ( 0 ..^ N ) { ( G ` n ) } = U_ k e. ( 0 ..^ N ) { ( G ` k ) } |
| 10 | 9 | uneq2i | |- ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) = ( { I } u. U_ k e. ( 0 ..^ N ) { ( G ` k ) } ) |
| 11 | 10 | eleq2i | |- ( b e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) <-> b e. ( { I } u. U_ k e. ( 0 ..^ N ) { ( G ` k ) } ) ) |
| 12 | 6 11 | bitri | |- ( b e. B <-> b e. ( { I } u. U_ k e. ( 0 ..^ N ) { ( G ` k ) } ) ) |
| 13 | elun | |- ( b e. ( { I } u. U_ k e. ( 0 ..^ N ) { ( G ` k ) } ) <-> ( b e. { I } \/ b e. U_ k e. ( 0 ..^ N ) { ( G ` k ) } ) ) |
|
| 14 | velsn | |- ( b e. { I } <-> b = I ) |
|
| 15 | eliun | |- ( b e. U_ k e. ( 0 ..^ N ) { ( G ` k ) } <-> E. k e. ( 0 ..^ N ) b e. { ( G ` k ) } ) |
|
| 16 | 14 15 | orbi12i | |- ( ( b e. { I } \/ b e. U_ k e. ( 0 ..^ N ) { ( G ` k ) } ) <-> ( b = I \/ E. k e. ( 0 ..^ N ) b e. { ( G ` k ) } ) ) |
| 17 | 12 13 16 | 3bitri | |- ( b e. B <-> ( b = I \/ E. k e. ( 0 ..^ N ) b e. { ( G ` k ) } ) ) |
| 18 | 1 2 3 | smndex1ibas | |- I e. ( Base ` M ) |
| 19 | eleq1 | |- ( b = I -> ( b e. ( Base ` M ) <-> I e. ( Base ` M ) ) ) |
|
| 20 | 18 19 | mpbiri | |- ( b = I -> b e. ( Base ` M ) ) |
| 21 | 1 2 3 4 | smndex1gbas | |- ( k e. ( 0 ..^ N ) -> ( G ` k ) e. ( Base ` M ) ) |
| 22 | 21 | adantr | |- ( ( k e. ( 0 ..^ N ) /\ b e. { ( G ` k ) } ) -> ( G ` k ) e. ( Base ` M ) ) |
| 23 | elsni | |- ( b e. { ( G ` k ) } -> b = ( G ` k ) ) |
|
| 24 | 23 | eleq1d | |- ( b e. { ( G ` k ) } -> ( b e. ( Base ` M ) <-> ( G ` k ) e. ( Base ` M ) ) ) |
| 25 | 24 | adantl | |- ( ( k e. ( 0 ..^ N ) /\ b e. { ( G ` k ) } ) -> ( b e. ( Base ` M ) <-> ( G ` k ) e. ( Base ` M ) ) ) |
| 26 | 22 25 | mpbird | |- ( ( k e. ( 0 ..^ N ) /\ b e. { ( G ` k ) } ) -> b e. ( Base ` M ) ) |
| 27 | 26 | rexlimiva | |- ( E. k e. ( 0 ..^ N ) b e. { ( G ` k ) } -> b e. ( Base ` M ) ) |
| 28 | 20 27 | jaoi | |- ( ( b = I \/ E. k e. ( 0 ..^ N ) b e. { ( G ` k ) } ) -> b e. ( Base ` M ) ) |
| 29 | 17 28 | sylbi | |- ( b e. B -> b e. ( Base ` M ) ) |
| 30 | 29 | ssriv | |- B C_ ( Base ` M ) |