This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the group operation of the monoid of endofunctions on A . (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndtset.g | |- G = ( EndoFMnd ` A ) |
|
| efmndplusg.b | |- B = ( Base ` G ) |
||
| efmndplusg.p | |- .+ = ( +g ` G ) |
||
| Assertion | efmndov | |- ( ( X e. B /\ Y e. B ) -> ( X .+ Y ) = ( X o. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndtset.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | efmndplusg.b | |- B = ( Base ` G ) |
|
| 3 | efmndplusg.p | |- .+ = ( +g ` G ) |
|
| 4 | coexg | |- ( ( X e. B /\ Y e. B ) -> ( X o. Y ) e. _V ) |
|
| 5 | coeq1 | |- ( f = X -> ( f o. g ) = ( X o. g ) ) |
|
| 6 | coeq2 | |- ( g = Y -> ( X o. g ) = ( X o. Y ) ) |
|
| 7 | 1 2 3 | efmndplusg | |- .+ = ( f e. B , g e. B |-> ( f o. g ) ) |
| 8 | 5 6 7 | ovmpog | |- ( ( X e. B /\ Y e. B /\ ( X o. Y ) e. _V ) -> ( X .+ Y ) = ( X o. Y ) ) |
| 9 | 4 8 | mpd3an3 | |- ( ( X e. B /\ Y e. B ) -> ( X .+ Y ) = ( X o. Y ) ) |