This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidd.b | |- ( ph -> B = ( Base ` G ) ) |
|
| grpidd.p | |- ( ph -> .+ = ( +g ` G ) ) |
||
| grpidd.z | |- ( ph -> .0. e. B ) |
||
| grpidd.i | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x ) |
||
| grpidd.j | |- ( ( ph /\ x e. B ) -> ( x .+ .0. ) = x ) |
||
| Assertion | grpidd | |- ( ph -> .0. = ( 0g ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidd.b | |- ( ph -> B = ( Base ` G ) ) |
|
| 2 | grpidd.p | |- ( ph -> .+ = ( +g ` G ) ) |
|
| 3 | grpidd.z | |- ( ph -> .0. e. B ) |
|
| 4 | grpidd.i | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x ) |
|
| 5 | grpidd.j | |- ( ( ph /\ x e. B ) -> ( x .+ .0. ) = x ) |
|
| 6 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 8 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 9 | 3 1 | eleqtrd | |- ( ph -> .0. e. ( Base ` G ) ) |
| 10 | 1 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( Base ` G ) ) ) |
| 11 | 10 | biimpar | |- ( ( ph /\ x e. ( Base ` G ) ) -> x e. B ) |
| 12 | 2 | adantr | |- ( ( ph /\ x e. B ) -> .+ = ( +g ` G ) ) |
| 13 | 12 | oveqd | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = ( .0. ( +g ` G ) x ) ) |
| 14 | 13 4 | eqtr3d | |- ( ( ph /\ x e. B ) -> ( .0. ( +g ` G ) x ) = x ) |
| 15 | 11 14 | syldan | |- ( ( ph /\ x e. ( Base ` G ) ) -> ( .0. ( +g ` G ) x ) = x ) |
| 16 | 12 | oveqd | |- ( ( ph /\ x e. B ) -> ( x .+ .0. ) = ( x ( +g ` G ) .0. ) ) |
| 17 | 16 5 | eqtr3d | |- ( ( ph /\ x e. B ) -> ( x ( +g ` G ) .0. ) = x ) |
| 18 | 11 17 | syldan | |- ( ( ph /\ x e. ( Base ` G ) ) -> ( x ( +g ` G ) .0. ) = x ) |
| 19 | 6 7 8 9 15 18 | ismgmid2 | |- ( ph -> .0. = ( 0g ` G ) ) |