This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a number between 0 and _pi is nonnegative. (Contributed by Mario Carneiro, 13-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinq12ge0 | |- ( A e. ( 0 [,] _pi ) -> 0 <_ ( sin ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | pire | |- _pi e. RR |
|
| 3 | 1 2 | elicc2i | |- ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
| 4 | 3 | simp1bi | |- ( A e. ( 0 [,] _pi ) -> A e. RR ) |
| 5 | rexr | |- ( 0 e. RR -> 0 e. RR* ) |
|
| 6 | rexr | |- ( _pi e. RR -> _pi e. RR* ) |
|
| 7 | elioo2 | |- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) ) |
| 9 | 1 2 8 | mp2an | |- ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) |
| 10 | sinq12gt0 | |- ( A e. ( 0 (,) _pi ) -> 0 < ( sin ` A ) ) |
|
| 11 | 9 10 | sylbir | |- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` A ) ) |
| 12 | 11 | 3expib | |- ( A e. RR -> ( ( 0 < A /\ A < _pi ) -> 0 < ( sin ` A ) ) ) |
| 13 | 4 12 | syl | |- ( A e. ( 0 [,] _pi ) -> ( ( 0 < A /\ A < _pi ) -> 0 < ( sin ` A ) ) ) |
| 14 | 4 | resincld | |- ( A e. ( 0 [,] _pi ) -> ( sin ` A ) e. RR ) |
| 15 | ltle | |- ( ( 0 e. RR /\ ( sin ` A ) e. RR ) -> ( 0 < ( sin ` A ) -> 0 <_ ( sin ` A ) ) ) |
|
| 16 | 1 14 15 | sylancr | |- ( A e. ( 0 [,] _pi ) -> ( 0 < ( sin ` A ) -> 0 <_ ( sin ` A ) ) ) |
| 17 | 13 16 | syld | |- ( A e. ( 0 [,] _pi ) -> ( ( 0 < A /\ A < _pi ) -> 0 <_ ( sin ` A ) ) ) |
| 18 | 17 | expd | |- ( A e. ( 0 [,] _pi ) -> ( 0 < A -> ( A < _pi -> 0 <_ ( sin ` A ) ) ) ) |
| 19 | 0le0 | |- 0 <_ 0 |
|
| 20 | sin0 | |- ( sin ` 0 ) = 0 |
|
| 21 | 19 20 | breqtrri | |- 0 <_ ( sin ` 0 ) |
| 22 | fveq2 | |- ( 0 = A -> ( sin ` 0 ) = ( sin ` A ) ) |
|
| 23 | 21 22 | breqtrid | |- ( 0 = A -> 0 <_ ( sin ` A ) ) |
| 24 | 23 | a1i13 | |- ( A e. ( 0 [,] _pi ) -> ( 0 = A -> ( A < _pi -> 0 <_ ( sin ` A ) ) ) ) |
| 25 | 3 | simp2bi | |- ( A e. ( 0 [,] _pi ) -> 0 <_ A ) |
| 26 | leloe | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
|
| 27 | 1 4 26 | sylancr | |- ( A e. ( 0 [,] _pi ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 28 | 25 27 | mpbid | |- ( A e. ( 0 [,] _pi ) -> ( 0 < A \/ 0 = A ) ) |
| 29 | 18 24 28 | mpjaod | |- ( A e. ( 0 [,] _pi ) -> ( A < _pi -> 0 <_ ( sin ` A ) ) ) |
| 30 | sinpi | |- ( sin ` _pi ) = 0 |
|
| 31 | 19 30 | breqtrri | |- 0 <_ ( sin ` _pi ) |
| 32 | fveq2 | |- ( A = _pi -> ( sin ` A ) = ( sin ` _pi ) ) |
|
| 33 | 31 32 | breqtrrid | |- ( A = _pi -> 0 <_ ( sin ` A ) ) |
| 34 | 33 | a1i | |- ( A e. ( 0 [,] _pi ) -> ( A = _pi -> 0 <_ ( sin ` A ) ) ) |
| 35 | 3 | simp3bi | |- ( A e. ( 0 [,] _pi ) -> A <_ _pi ) |
| 36 | leloe | |- ( ( A e. RR /\ _pi e. RR ) -> ( A <_ _pi <-> ( A < _pi \/ A = _pi ) ) ) |
|
| 37 | 4 2 36 | sylancl | |- ( A e. ( 0 [,] _pi ) -> ( A <_ _pi <-> ( A < _pi \/ A = _pi ) ) ) |
| 38 | 35 37 | mpbid | |- ( A e. ( 0 [,] _pi ) -> ( A < _pi \/ A = _pi ) ) |
| 39 | 29 34 38 | mpjaod | |- ( A e. ( 0 [,] _pi ) -> 0 <_ ( sin ` A ) ) |