This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of Gleason p. 311 and its converse. (Contributed by NM, 15-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | binom2.1 | |- A e. CC |
|
| binom2.2 | |- B e. CC |
||
| Assertion | sqeqori | |- ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binom2.1 | |- A e. CC |
|
| 2 | binom2.2 | |- B e. CC |
|
| 3 | 1 2 | subsqi | |- ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) |
| 4 | 3 | eqeq1i | |- ( ( ( A ^ 2 ) - ( B ^ 2 ) ) = 0 <-> ( ( A + B ) x. ( A - B ) ) = 0 ) |
| 5 | 1 | sqcli | |- ( A ^ 2 ) e. CC |
| 6 | 2 | sqcli | |- ( B ^ 2 ) e. CC |
| 7 | 5 6 | subeq0i | |- ( ( ( A ^ 2 ) - ( B ^ 2 ) ) = 0 <-> ( A ^ 2 ) = ( B ^ 2 ) ) |
| 8 | 1 2 | addcli | |- ( A + B ) e. CC |
| 9 | 1 2 | subcli | |- ( A - B ) e. CC |
| 10 | 8 9 | mul0ori | |- ( ( ( A + B ) x. ( A - B ) ) = 0 <-> ( ( A + B ) = 0 \/ ( A - B ) = 0 ) ) |
| 11 | 4 7 10 | 3bitr3i | |- ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( ( A + B ) = 0 \/ ( A - B ) = 0 ) ) |
| 12 | orcom | |- ( ( ( A + B ) = 0 \/ ( A - B ) = 0 ) <-> ( ( A - B ) = 0 \/ ( A + B ) = 0 ) ) |
|
| 13 | 1 2 | subeq0i | |- ( ( A - B ) = 0 <-> A = B ) |
| 14 | 1 2 | subnegi | |- ( A - -u B ) = ( A + B ) |
| 15 | 14 | eqeq1i | |- ( ( A - -u B ) = 0 <-> ( A + B ) = 0 ) |
| 16 | 2 | negcli | |- -u B e. CC |
| 17 | 1 16 | subeq0i | |- ( ( A - -u B ) = 0 <-> A = -u B ) |
| 18 | 15 17 | bitr3i | |- ( ( A + B ) = 0 <-> A = -u B ) |
| 19 | 13 18 | orbi12i | |- ( ( ( A - B ) = 0 \/ ( A + B ) = 0 ) <-> ( A = B \/ A = -u B ) ) |
| 20 | 11 12 19 | 3bitri | |- ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) ) |