This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent of _pi / 4 . (Contributed by Mario Carneiro, 5-Apr-2015) (Proof shortened by SN, 2-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tan4thpi | |- ( tan ` ( _pi / 4 ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | 4cn | |- 4 e. CC |
|
| 3 | 4ne0 | |- 4 =/= 0 |
|
| 4 | 1 2 3 | divcli | |- ( _pi / 4 ) e. CC |
| 5 | sincos4thpi | |- ( ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) /\ ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) ) |
|
| 6 | 5 | simpri | |- ( cos ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 7 | sqrt2re | |- ( sqrt ` 2 ) e. RR |
|
| 8 | 7 | recni | |- ( sqrt ` 2 ) e. CC |
| 9 | 2re | |- 2 e. RR |
|
| 10 | 2pos | |- 0 < 2 |
|
| 11 | 9 10 | sqrtgt0ii | |- 0 < ( sqrt ` 2 ) |
| 12 | 7 11 | gt0ne0ii | |- ( sqrt ` 2 ) =/= 0 |
| 13 | recne0 | |- ( ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) -> ( 1 / ( sqrt ` 2 ) ) =/= 0 ) |
|
| 14 | 8 12 13 | mp2an | |- ( 1 / ( sqrt ` 2 ) ) =/= 0 |
| 15 | 6 14 | eqnetri | |- ( cos ` ( _pi / 4 ) ) =/= 0 |
| 16 | tanval | |- ( ( ( _pi / 4 ) e. CC /\ ( cos ` ( _pi / 4 ) ) =/= 0 ) -> ( tan ` ( _pi / 4 ) ) = ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) ) |
|
| 17 | 4 15 16 | mp2an | |- ( tan ` ( _pi / 4 ) ) = ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) |
| 18 | 5 | simpli | |- ( sin ` ( _pi / 4 ) ) = ( 1 / ( sqrt ` 2 ) ) |
| 19 | 18 6 | oveq12i | |- ( ( sin ` ( _pi / 4 ) ) / ( cos ` ( _pi / 4 ) ) ) = ( ( 1 / ( sqrt ` 2 ) ) / ( 1 / ( sqrt ` 2 ) ) ) |
| 20 | 8 12 | reccli | |- ( 1 / ( sqrt ` 2 ) ) e. CC |
| 21 | 20 14 | dividi | |- ( ( 1 / ( sqrt ` 2 ) ) / ( 1 / ( sqrt ` 2 ) ) ) = 1 |
| 22 | 17 19 21 | 3eqtri | |- ( tan ` ( _pi / 4 ) ) = 1 |