This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removing the first term from a sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqsplit.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqsplit.2 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| seqsplit.3 | |- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
||
| seq1p.4 | |- ( ph -> M e. ZZ ) |
||
| seq1p.5 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
||
| Assertion | seq1p | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( ( F ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqsplit.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqsplit.2 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 3 | seqsplit.3 | |- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 4 | seq1p.4 | |- ( ph -> M e. ZZ ) |
|
| 5 | seq1p.5 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
|
| 6 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 7 | 4 6 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 8 | 1 2 3 7 5 | seqsplit | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |
| 9 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
|
| 10 | 4 9 | syl | |- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 11 | 10 | oveq1d | |- ( ph -> ( ( seq M ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) = ( ( F ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |
| 12 | 8 11 | eqtrd | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( ( F ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |