This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfveq2.1 | |- ( ph -> K e. ( ZZ>= ` M ) ) |
|
| seqfveq2.2 | |- ( ph -> ( seq M ( .+ , F ) ` K ) = ( G ` K ) ) |
||
| seqfeq2.4 | |- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> ( F ` k ) = ( G ` k ) ) |
||
| Assertion | seqfeq2 | |- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) = seq K ( .+ , G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfveq2.1 | |- ( ph -> K e. ( ZZ>= ` M ) ) |
|
| 2 | seqfveq2.2 | |- ( ph -> ( seq M ( .+ , F ) ` K ) = ( G ` K ) ) |
|
| 3 | seqfeq2.4 | |- ( ( ph /\ k e. ( ZZ>= ` ( K + 1 ) ) ) -> ( F ` k ) = ( G ` k ) ) |
|
| 4 | eluzel2 | |- ( K e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 5 | seqfn | |- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
|
| 6 | 1 4 5 | 3syl | |- ( ph -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
| 7 | uzss | |- ( K e. ( ZZ>= ` M ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) |
|
| 8 | 1 7 | syl | |- ( ph -> ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) |
| 9 | fnssres | |- ( ( seq M ( .+ , F ) Fn ( ZZ>= ` M ) /\ ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) -> ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) Fn ( ZZ>= ` K ) ) |
|
| 10 | 6 8 9 | syl2anc | |- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) Fn ( ZZ>= ` K ) ) |
| 11 | eluzelz | |- ( K e. ( ZZ>= ` M ) -> K e. ZZ ) |
|
| 12 | seqfn | |- ( K e. ZZ -> seq K ( .+ , G ) Fn ( ZZ>= ` K ) ) |
|
| 13 | 1 11 12 | 3syl | |- ( ph -> seq K ( .+ , G ) Fn ( ZZ>= ` K ) ) |
| 14 | fvres | |- ( x e. ( ZZ>= ` K ) -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) ` x ) = ( seq M ( .+ , F ) ` x ) ) |
|
| 15 | 14 | adantl | |- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) ` x ) = ( seq M ( .+ , F ) ` x ) ) |
| 16 | 1 | adantr | |- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> K e. ( ZZ>= ` M ) ) |
| 17 | 2 | adantr | |- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> ( seq M ( .+ , F ) ` K ) = ( G ` K ) ) |
| 18 | simpr | |- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> x e. ( ZZ>= ` K ) ) |
|
| 19 | elfzuz | |- ( k e. ( ( K + 1 ) ... x ) -> k e. ( ZZ>= ` ( K + 1 ) ) ) |
|
| 20 | 19 3 | sylan2 | |- ( ( ph /\ k e. ( ( K + 1 ) ... x ) ) -> ( F ` k ) = ( G ` k ) ) |
| 21 | 20 | adantlr | |- ( ( ( ph /\ x e. ( ZZ>= ` K ) ) /\ k e. ( ( K + 1 ) ... x ) ) -> ( F ` k ) = ( G ` k ) ) |
| 22 | 16 17 18 21 | seqfveq2 | |- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> ( seq M ( .+ , F ) ` x ) = ( seq K ( .+ , G ) ` x ) ) |
| 23 | 15 22 | eqtrd | |- ( ( ph /\ x e. ( ZZ>= ` K ) ) -> ( ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) ` x ) = ( seq K ( .+ , G ) ` x ) ) |
| 24 | 10 13 23 | eqfnfvd | |- ( ph -> ( seq M ( .+ , F ) |` ( ZZ>= ` K ) ) = seq K ( .+ , G ) ) |