This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half of rpmulgcd2 , which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulgcddvds | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
|
| 2 | simp2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
|
| 3 | simp3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 4 | 2 3 | zmulcld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
| 5 | 1 4 | gcdcld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) e. NN0 ) |
| 6 | 5 | nn0zd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) e. ZZ ) |
| 7 | dvds0 | |- ( ( K gcd ( M x. N ) ) e. ZZ -> ( K gcd ( M x. N ) ) || 0 ) |
|
| 8 | 6 7 | syl | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || 0 ) |
| 9 | 8 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) = 0 ) -> ( K gcd ( M x. N ) ) || 0 ) |
| 10 | oveq2 | |- ( ( K gcd N ) = 0 -> ( ( K gcd M ) x. ( K gcd N ) ) = ( ( K gcd M ) x. 0 ) ) |
|
| 11 | 1 2 | gcdcld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd M ) e. NN0 ) |
| 12 | 11 | nn0cnd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd M ) e. CC ) |
| 13 | 12 | mul01d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd M ) x. 0 ) = 0 ) |
| 14 | 10 13 | sylan9eqr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) = 0 ) -> ( ( K gcd M ) x. ( K gcd N ) ) = 0 ) |
| 15 | 9 14 | breqtrrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) = 0 ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
| 16 | 6 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd ( M x. N ) ) e. ZZ ) |
| 17 | 16 | zcnd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd ( M x. N ) ) e. CC ) |
| 18 | 1 3 | gcdcld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd N ) e. NN0 ) |
| 19 | 18 | nn0zd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd N ) e. ZZ ) |
| 20 | 19 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd N ) e. ZZ ) |
| 21 | 20 | zcnd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd N ) e. CC ) |
| 22 | simpr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd N ) =/= 0 ) |
|
| 23 | 17 21 22 | divcan1d | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) = ( K gcd ( M x. N ) ) ) |
| 24 | gcddvds | |- ( ( K e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( K gcd ( M x. N ) ) || K /\ ( K gcd ( M x. N ) ) || ( M x. N ) ) ) |
|
| 25 | 1 4 24 | syl2anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd ( M x. N ) ) || K /\ ( K gcd ( M x. N ) ) || ( M x. N ) ) ) |
| 26 | 25 | simpld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || K ) |
| 27 | 6 1 19 26 | dvdsmultr1d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( K x. ( K gcd N ) ) ) |
| 28 | 27 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd ( M x. N ) ) || ( K x. ( K gcd N ) ) ) |
| 29 | 23 28 | eqbrtrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) || ( K x. ( K gcd N ) ) ) |
| 30 | gcddvds | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) ) |
|
| 31 | 1 3 30 | syl2anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) || K /\ ( K gcd N ) || N ) ) |
| 32 | 31 | simpld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd N ) || K ) |
| 33 | 31 | simprd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd N ) || N ) |
| 34 | dvdsmultr2 | |- ( ( ( K gcd N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) || N -> ( K gcd N ) || ( M x. N ) ) ) |
|
| 35 | 19 2 3 34 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd N ) || N -> ( K gcd N ) || ( M x. N ) ) ) |
| 36 | 33 35 | mpd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd N ) || ( M x. N ) ) |
| 37 | dvdsgcd | |- ( ( ( K gcd N ) e. ZZ /\ K e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( K gcd N ) || K /\ ( K gcd N ) || ( M x. N ) ) -> ( K gcd N ) || ( K gcd ( M x. N ) ) ) ) |
|
| 38 | 19 1 4 37 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K gcd N ) || K /\ ( K gcd N ) || ( M x. N ) ) -> ( K gcd N ) || ( K gcd ( M x. N ) ) ) ) |
| 39 | 32 36 38 | mp2and | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd N ) || ( K gcd ( M x. N ) ) ) |
| 40 | 39 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd N ) || ( K gcd ( M x. N ) ) ) |
| 41 | dvdsval2 | |- ( ( ( K gcd N ) e. ZZ /\ ( K gcd N ) =/= 0 /\ ( K gcd ( M x. N ) ) e. ZZ ) -> ( ( K gcd N ) || ( K gcd ( M x. N ) ) <-> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) e. ZZ ) ) |
|
| 42 | 20 22 16 41 | syl3anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( K gcd N ) || ( K gcd ( M x. N ) ) <-> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) e. ZZ ) ) |
| 43 | 40 42 | mpbid | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) e. ZZ ) |
| 44 | 1 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> K e. ZZ ) |
| 45 | dvdsmulcr | |- ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) e. ZZ /\ K e. ZZ /\ ( ( K gcd N ) e. ZZ /\ ( K gcd N ) =/= 0 ) ) -> ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) || ( K x. ( K gcd N ) ) <-> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || K ) ) |
|
| 46 | 43 44 20 22 45 | syl112anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) || ( K x. ( K gcd N ) ) <-> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || K ) ) |
| 47 | 29 46 | mpbid | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || K ) |
| 48 | nn0abscl | |- ( M e. ZZ -> ( abs ` M ) e. NN0 ) |
|
| 49 | 2 48 | syl | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( abs ` M ) e. NN0 ) |
| 50 | 49 | nn0zd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( abs ` M ) e. ZZ ) |
| 51 | dvdsmultr2 | |- ( ( ( K gcd ( M x. N ) ) e. ZZ /\ ( abs ` M ) e. ZZ /\ K e. ZZ ) -> ( ( K gcd ( M x. N ) ) || K -> ( K gcd ( M x. N ) ) || ( ( abs ` M ) x. K ) ) ) |
|
| 52 | 6 50 1 51 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd ( M x. N ) ) || K -> ( K gcd ( M x. N ) ) || ( ( abs ` M ) x. K ) ) ) |
| 53 | 26 52 | mpd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( abs ` M ) x. K ) ) |
| 54 | 50 3 | zmulcld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) x. N ) e. ZZ ) |
| 55 | 25 | simprd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( M x. N ) ) |
| 56 | iddvds | |- ( M e. ZZ -> M || M ) |
|
| 57 | 2 56 | syl | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M || M ) |
| 58 | dvdsabsb | |- ( ( M e. ZZ /\ M e. ZZ ) -> ( M || M <-> M || ( abs ` M ) ) ) |
|
| 59 | 2 2 58 | syl2anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M || M <-> M || ( abs ` M ) ) ) |
| 60 | 57 59 | mpbid | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M || ( abs ` M ) ) |
| 61 | dvdsmulc | |- ( ( M e. ZZ /\ ( abs ` M ) e. ZZ /\ N e. ZZ ) -> ( M || ( abs ` M ) -> ( M x. N ) || ( ( abs ` M ) x. N ) ) ) |
|
| 62 | 2 50 3 61 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M || ( abs ` M ) -> ( M x. N ) || ( ( abs ` M ) x. N ) ) ) |
| 63 | 60 62 | mpd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) || ( ( abs ` M ) x. N ) ) |
| 64 | 6 4 54 55 63 | dvdstrd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( abs ` M ) x. N ) ) |
| 65 | 50 1 | zmulcld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) x. K ) e. ZZ ) |
| 66 | dvdsgcd | |- ( ( ( K gcd ( M x. N ) ) e. ZZ /\ ( ( abs ` M ) x. K ) e. ZZ /\ ( ( abs ` M ) x. N ) e. ZZ ) -> ( ( ( K gcd ( M x. N ) ) || ( ( abs ` M ) x. K ) /\ ( K gcd ( M x. N ) ) || ( ( abs ` M ) x. N ) ) -> ( K gcd ( M x. N ) ) || ( ( ( abs ` M ) x. K ) gcd ( ( abs ` M ) x. N ) ) ) ) |
|
| 67 | 6 65 54 66 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( K gcd ( M x. N ) ) || ( ( abs ` M ) x. K ) /\ ( K gcd ( M x. N ) ) || ( ( abs ` M ) x. N ) ) -> ( K gcd ( M x. N ) ) || ( ( ( abs ` M ) x. K ) gcd ( ( abs ` M ) x. N ) ) ) ) |
| 68 | 53 64 67 | mp2and | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( ( abs ` M ) x. K ) gcd ( ( abs ` M ) x. N ) ) ) |
| 69 | 18 | nn0red | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd N ) e. RR ) |
| 70 | 18 | nn0ge0d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> 0 <_ ( K gcd N ) ) |
| 71 | 69 70 | absidd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( abs ` ( K gcd N ) ) = ( K gcd N ) ) |
| 72 | 71 | oveq2d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) x. ( abs ` ( K gcd N ) ) ) = ( ( abs ` M ) x. ( K gcd N ) ) ) |
| 73 | 2 | zcnd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M e. CC ) |
| 74 | 18 | nn0cnd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd N ) e. CC ) |
| 75 | 73 74 | absmuld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( abs ` ( M x. ( K gcd N ) ) ) = ( ( abs ` M ) x. ( abs ` ( K gcd N ) ) ) ) |
| 76 | mulgcd | |- ( ( ( abs ` M ) e. NN0 /\ K e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) x. K ) gcd ( ( abs ` M ) x. N ) ) = ( ( abs ` M ) x. ( K gcd N ) ) ) |
|
| 77 | 49 1 3 76 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) x. K ) gcd ( ( abs ` M ) x. N ) ) = ( ( abs ` M ) x. ( K gcd N ) ) ) |
| 78 | 72 75 77 | 3eqtr4d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( abs ` ( M x. ( K gcd N ) ) ) = ( ( ( abs ` M ) x. K ) gcd ( ( abs ` M ) x. N ) ) ) |
| 79 | 68 78 | breqtrrd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( abs ` ( M x. ( K gcd N ) ) ) ) |
| 80 | 2 19 | zmulcld | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. ( K gcd N ) ) e. ZZ ) |
| 81 | dvdsabsb | |- ( ( ( K gcd ( M x. N ) ) e. ZZ /\ ( M x. ( K gcd N ) ) e. ZZ ) -> ( ( K gcd ( M x. N ) ) || ( M x. ( K gcd N ) ) <-> ( K gcd ( M x. N ) ) || ( abs ` ( M x. ( K gcd N ) ) ) ) ) |
|
| 82 | 6 80 81 | syl2anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K gcd ( M x. N ) ) || ( M x. ( K gcd N ) ) <-> ( K gcd ( M x. N ) ) || ( abs ` ( M x. ( K gcd N ) ) ) ) ) |
| 83 | 79 82 | mpbird | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( M x. ( K gcd N ) ) ) |
| 84 | 83 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd ( M x. N ) ) || ( M x. ( K gcd N ) ) ) |
| 85 | 23 84 | eqbrtrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) || ( M x. ( K gcd N ) ) ) |
| 86 | 2 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> M e. ZZ ) |
| 87 | dvdsmulcr | |- ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) e. ZZ /\ M e. ZZ /\ ( ( K gcd N ) e. ZZ /\ ( K gcd N ) =/= 0 ) ) -> ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) || ( M x. ( K gcd N ) ) <-> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || M ) ) |
|
| 88 | 43 86 20 22 87 | syl112anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) || ( M x. ( K gcd N ) ) <-> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || M ) ) |
| 89 | 85 88 | mpbid | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || M ) |
| 90 | dvdsgcd | |- ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) e. ZZ /\ K e. ZZ /\ M e. ZZ ) -> ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || K /\ ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || M ) -> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || ( K gcd M ) ) ) |
|
| 91 | 43 44 86 90 | syl3anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || K /\ ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || M ) -> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || ( K gcd M ) ) ) |
| 92 | 47 89 91 | mp2and | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || ( K gcd M ) ) |
| 93 | 11 | nn0zd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd M ) e. ZZ ) |
| 94 | 93 | adantr | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd M ) e. ZZ ) |
| 95 | dvdsmulc | |- ( ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) e. ZZ /\ ( K gcd M ) e. ZZ /\ ( K gcd N ) e. ZZ ) -> ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || ( K gcd M ) -> ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) ) |
|
| 96 | 43 94 20 95 | syl3anc | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) || ( K gcd M ) -> ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) ) |
| 97 | 92 96 | mpd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( ( ( K gcd ( M x. N ) ) / ( K gcd N ) ) x. ( K gcd N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
| 98 | 23 97 | eqbrtrrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd N ) =/= 0 ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |
| 99 | 15 98 | pm2.61dane | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K gcd ( M x. N ) ) || ( ( K gcd M ) x. ( K gcd N ) ) ) |