This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprmdvds2 | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( M || K /\ N || K ) -> ( M x. N ) || K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N || K <-> E. x e. ZZ ( x x. N ) = K ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( N || K <-> E. x e. ZZ ( x x. N ) = K ) ) |
| 3 | 2 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( N || K <-> E. x e. ZZ ( x x. N ) = K ) ) |
| 4 | simprr | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> x e. ZZ ) |
|
| 5 | simpl2 | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> N e. ZZ ) |
|
| 6 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 7 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 8 | mulcom | |- ( ( x e. CC /\ N e. CC ) -> ( x x. N ) = ( N x. x ) ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( x e. ZZ /\ N e. ZZ ) -> ( x x. N ) = ( N x. x ) ) |
| 10 | 4 5 9 | syl2anc | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> ( x x. N ) = ( N x. x ) ) |
| 11 | 10 | breq2d | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> ( M || ( x x. N ) <-> M || ( N x. x ) ) ) |
| 12 | simprl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> ( M gcd N ) = 1 ) |
|
| 13 | simpl1 | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> M e. ZZ ) |
|
| 14 | coprmdvds | |- ( ( M e. ZZ /\ N e. ZZ /\ x e. ZZ ) -> ( ( M || ( N x. x ) /\ ( M gcd N ) = 1 ) -> M || x ) ) |
|
| 15 | 13 5 4 14 | syl3anc | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> ( ( M || ( N x. x ) /\ ( M gcd N ) = 1 ) -> M || x ) ) |
| 16 | 12 15 | mpan2d | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> ( M || ( N x. x ) -> M || x ) ) |
| 17 | 11 16 | sylbid | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> ( M || ( x x. N ) -> M || x ) ) |
| 18 | dvdsmulc | |- ( ( M e. ZZ /\ x e. ZZ /\ N e. ZZ ) -> ( M || x -> ( M x. N ) || ( x x. N ) ) ) |
|
| 19 | 13 4 5 18 | syl3anc | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> ( M || x -> ( M x. N ) || ( x x. N ) ) ) |
| 20 | 17 19 | syld | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> ( M || ( x x. N ) -> ( M x. N ) || ( x x. N ) ) ) |
| 21 | breq2 | |- ( ( x x. N ) = K -> ( M || ( x x. N ) <-> M || K ) ) |
|
| 22 | breq2 | |- ( ( x x. N ) = K -> ( ( M x. N ) || ( x x. N ) <-> ( M x. N ) || K ) ) |
|
| 23 | 21 22 | imbi12d | |- ( ( x x. N ) = K -> ( ( M || ( x x. N ) -> ( M x. N ) || ( x x. N ) ) <-> ( M || K -> ( M x. N ) || K ) ) ) |
| 24 | 20 23 | syl5ibcom | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( ( M gcd N ) = 1 /\ x e. ZZ ) ) -> ( ( x x. N ) = K -> ( M || K -> ( M x. N ) || K ) ) ) |
| 25 | 24 | anassrs | |- ( ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M gcd N ) = 1 ) /\ x e. ZZ ) -> ( ( x x. N ) = K -> ( M || K -> ( M x. N ) || K ) ) ) |
| 26 | 25 | rexlimdva | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( E. x e. ZZ ( x x. N ) = K -> ( M || K -> ( M x. N ) || K ) ) ) |
| 27 | 3 26 | sylbid | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( N || K -> ( M || K -> ( M x. N ) || K ) ) ) |
| 28 | 27 | impcomd | |- ( ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( M gcd N ) = 1 ) -> ( ( M || K /\ N || K ) -> ( M x. N ) || K ) ) |