This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qredeq | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) /\ ( M / N ) = ( P / Q ) ) -> ( M = P /\ N = Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 2 | 1 | adantr | |- ( ( M e. ZZ /\ N e. NN ) -> M e. CC ) |
| 3 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 4 | 3 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N e. CC ) |
| 5 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 6 | 5 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N =/= 0 ) |
| 7 | 2 4 6 | divcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. CC ) |
| 8 | 7 | 3adant3 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( M / N ) e. CC ) |
| 9 | 8 | adantr | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( M / N ) e. CC ) |
| 10 | zcn | |- ( P e. ZZ -> P e. CC ) |
|
| 11 | 10 | adantr | |- ( ( P e. ZZ /\ Q e. NN ) -> P e. CC ) |
| 12 | nncn | |- ( Q e. NN -> Q e. CC ) |
|
| 13 | 12 | adantl | |- ( ( P e. ZZ /\ Q e. NN ) -> Q e. CC ) |
| 14 | nnne0 | |- ( Q e. NN -> Q =/= 0 ) |
|
| 15 | 14 | adantl | |- ( ( P e. ZZ /\ Q e. NN ) -> Q =/= 0 ) |
| 16 | 11 13 15 | divcld | |- ( ( P e. ZZ /\ Q e. NN ) -> ( P / Q ) e. CC ) |
| 17 | 16 | 3adant3 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( P / Q ) e. CC ) |
| 18 | 17 | adantl | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( P / Q ) e. CC ) |
| 19 | 3 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N e. CC ) |
| 20 | 19 | adantr | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> N e. CC ) |
| 21 | 5 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N =/= 0 ) |
| 22 | 21 | adantr | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> N =/= 0 ) |
| 23 | 9 18 20 22 | mulcand | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. ( M / N ) ) = ( N x. ( P / Q ) ) <-> ( M / N ) = ( P / Q ) ) ) |
| 24 | 2 4 6 | divcan2d | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( M / N ) ) = M ) |
| 25 | 24 | 3adant3 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( N x. ( M / N ) ) = M ) |
| 26 | 25 | adantr | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N x. ( M / N ) ) = M ) |
| 27 | 26 | eqeq1d | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. ( M / N ) ) = ( N x. ( P / Q ) ) <-> M = ( N x. ( P / Q ) ) ) ) |
| 28 | 23 27 | bitr3d | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M / N ) = ( P / Q ) <-> M = ( N x. ( P / Q ) ) ) ) |
| 29 | 1 | 3ad2ant1 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> M e. CC ) |
| 30 | 29 | adantr | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> M e. CC ) |
| 31 | mulcl | |- ( ( N e. CC /\ ( P / Q ) e. CC ) -> ( N x. ( P / Q ) ) e. CC ) |
|
| 32 | 19 17 31 | syl2an | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N x. ( P / Q ) ) e. CC ) |
| 33 | 12 | 3ad2ant2 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q e. CC ) |
| 34 | 33 | adantl | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> Q e. CC ) |
| 35 | 14 | 3ad2ant2 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q =/= 0 ) |
| 36 | 35 | adantl | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> Q =/= 0 ) |
| 37 | 30 32 34 36 | mulcan2d | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. Q ) = ( ( N x. ( P / Q ) ) x. Q ) <-> M = ( N x. ( P / Q ) ) ) ) |
| 38 | 20 18 34 | mulassd | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. ( P / Q ) ) x. Q ) = ( N x. ( ( P / Q ) x. Q ) ) ) |
| 39 | 11 13 15 | divcan1d | |- ( ( P e. ZZ /\ Q e. NN ) -> ( ( P / Q ) x. Q ) = P ) |
| 40 | 39 | 3adant3 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( ( P / Q ) x. Q ) = P ) |
| 41 | 40 | adantl | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( P / Q ) x. Q ) = P ) |
| 42 | 41 | oveq2d | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N x. ( ( P / Q ) x. Q ) ) = ( N x. P ) ) |
| 43 | 38 42 | eqtrd | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. ( P / Q ) ) x. Q ) = ( N x. P ) ) |
| 44 | 43 | eqeq2d | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. Q ) = ( ( N x. ( P / Q ) ) x. Q ) <-> ( M x. Q ) = ( N x. P ) ) ) |
| 45 | 37 44 | bitr3d | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( M = ( N x. ( P / Q ) ) <-> ( M x. Q ) = ( N x. P ) ) ) |
| 46 | 28 45 | bitrd | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M / N ) = ( P / Q ) <-> ( M x. Q ) = ( N x. P ) ) ) |
| 47 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 48 | 47 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N e. ZZ ) |
| 49 | simp2 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q e. NN ) |
|
| 50 | 48 49 | anim12i | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N e. ZZ /\ Q e. NN ) ) |
| 51 | 50 | adantr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N e. ZZ /\ Q e. NN ) ) |
| 52 | 48 | adantr | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> N e. ZZ ) |
| 53 | simpl1 | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> M e. ZZ ) |
|
| 54 | nnz | |- ( Q e. NN -> Q e. ZZ ) |
|
| 55 | 54 | 3ad2ant2 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q e. ZZ ) |
| 56 | 55 | adantl | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> Q e. ZZ ) |
| 57 | 52 53 56 | 3jca | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N e. ZZ /\ M e. ZZ /\ Q e. ZZ ) ) |
| 58 | 57 | adantr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N e. ZZ /\ M e. ZZ /\ Q e. ZZ ) ) |
| 59 | simp1 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> P e. ZZ ) |
|
| 60 | dvdsmul1 | |- ( ( N e. ZZ /\ P e. ZZ ) -> N || ( N x. P ) ) |
|
| 61 | 48 59 60 | syl2an | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> N || ( N x. P ) ) |
| 62 | 61 | adantr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N || ( N x. P ) ) |
| 63 | simpr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( M x. Q ) = ( N x. P ) ) |
|
| 64 | 62 63 | breqtrrd | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N || ( M x. Q ) ) |
| 65 | gcdcom | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = ( M gcd N ) ) |
|
| 66 | 47 65 | sylan | |- ( ( N e. NN /\ M e. ZZ ) -> ( N gcd M ) = ( M gcd N ) ) |
| 67 | 66 | ancoms | |- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd M ) = ( M gcd N ) ) |
| 68 | 67 | 3adant3 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( N gcd M ) = ( M gcd N ) ) |
| 69 | simp3 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( M gcd N ) = 1 ) |
|
| 70 | 68 69 | eqtrd | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( N gcd M ) = 1 ) |
| 71 | 70 | ad2antrr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N gcd M ) = 1 ) |
| 72 | 64 71 | jca | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N || ( M x. Q ) /\ ( N gcd M ) = 1 ) ) |
| 73 | coprmdvds | |- ( ( N e. ZZ /\ M e. ZZ /\ Q e. ZZ ) -> ( ( N || ( M x. Q ) /\ ( N gcd M ) = 1 ) -> N || Q ) ) |
|
| 74 | 58 72 73 | sylc | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N || Q ) |
| 75 | dvdsle | |- ( ( N e. ZZ /\ Q e. NN ) -> ( N || Q -> N <_ Q ) ) |
|
| 76 | 51 74 75 | sylc | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N <_ Q ) |
| 77 | simp2 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N e. NN ) |
|
| 78 | 55 77 | anim12i | |- ( ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) /\ ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) ) -> ( Q e. ZZ /\ N e. NN ) ) |
| 79 | 78 | ancoms | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( Q e. ZZ /\ N e. NN ) ) |
| 80 | 79 | adantr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( Q e. ZZ /\ N e. NN ) ) |
| 81 | simpr1 | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> P e. ZZ ) |
|
| 82 | 56 81 52 | 3jca | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( Q e. ZZ /\ P e. ZZ /\ N e. ZZ ) ) |
| 83 | 82 | adantr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( Q e. ZZ /\ P e. ZZ /\ N e. ZZ ) ) |
| 84 | simp1 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> M e. ZZ ) |
|
| 85 | dvdsmul2 | |- ( ( M e. ZZ /\ Q e. ZZ ) -> Q || ( M x. Q ) ) |
|
| 86 | 84 55 85 | syl2an | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> Q || ( M x. Q ) ) |
| 87 | 86 | adantr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q || ( M x. Q ) ) |
| 88 | 10 | 3ad2ant1 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> P e. CC ) |
| 89 | mulcom | |- ( ( N e. CC /\ P e. CC ) -> ( N x. P ) = ( P x. N ) ) |
|
| 90 | 19 88 89 | syl2an | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N x. P ) = ( P x. N ) ) |
| 91 | 90 | adantr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N x. P ) = ( P x. N ) ) |
| 92 | 63 91 | eqtrd | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( M x. Q ) = ( P x. N ) ) |
| 93 | 87 92 | breqtrd | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q || ( P x. N ) ) |
| 94 | gcdcom | |- ( ( Q e. ZZ /\ P e. ZZ ) -> ( Q gcd P ) = ( P gcd Q ) ) |
|
| 95 | 54 94 | sylan | |- ( ( Q e. NN /\ P e. ZZ ) -> ( Q gcd P ) = ( P gcd Q ) ) |
| 96 | 95 | ancoms | |- ( ( P e. ZZ /\ Q e. NN ) -> ( Q gcd P ) = ( P gcd Q ) ) |
| 97 | 96 | 3adant3 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( Q gcd P ) = ( P gcd Q ) ) |
| 98 | simp3 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( P gcd Q ) = 1 ) |
|
| 99 | 97 98 | eqtrd | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( Q gcd P ) = 1 ) |
| 100 | 99 | ad2antlr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( Q gcd P ) = 1 ) |
| 101 | 93 100 | jca | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( Q || ( P x. N ) /\ ( Q gcd P ) = 1 ) ) |
| 102 | coprmdvds | |- ( ( Q e. ZZ /\ P e. ZZ /\ N e. ZZ ) -> ( ( Q || ( P x. N ) /\ ( Q gcd P ) = 1 ) -> Q || N ) ) |
|
| 103 | 83 101 102 | sylc | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q || N ) |
| 104 | dvdsle | |- ( ( Q e. ZZ /\ N e. NN ) -> ( Q || N -> Q <_ N ) ) |
|
| 105 | 80 103 104 | sylc | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q <_ N ) |
| 106 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 107 | 106 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N e. RR ) |
| 108 | 107 | ad2antrr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N e. RR ) |
| 109 | nnre | |- ( Q e. NN -> Q e. RR ) |
|
| 110 | 109 | 3ad2ant2 | |- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q e. RR ) |
| 111 | 110 | ad2antlr | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q e. RR ) |
| 112 | 108 111 | letri3d | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N = Q <-> ( N <_ Q /\ Q <_ N ) ) ) |
| 113 | 76 105 112 | mpbir2and | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N = Q ) |
| 114 | oveq2 | |- ( N = Q -> ( M x. N ) = ( M x. Q ) ) |
|
| 115 | 114 | eqeq1d | |- ( N = Q -> ( ( M x. N ) = ( N x. P ) <-> ( M x. Q ) = ( N x. P ) ) ) |
| 116 | 115 | anbi2d | |- ( N = Q -> ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. N ) = ( N x. P ) ) <-> ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) ) ) |
| 117 | mulcom | |- ( ( M e. CC /\ N e. CC ) -> ( M x. N ) = ( N x. M ) ) |
|
| 118 | 1 3 117 | syl2an | |- ( ( M e. ZZ /\ N e. NN ) -> ( M x. N ) = ( N x. M ) ) |
| 119 | 118 | 3adant3 | |- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( M x. N ) = ( N x. M ) ) |
| 120 | 119 | adantr | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( M x. N ) = ( N x. M ) ) |
| 121 | 120 | eqeq1d | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. N ) = ( N x. P ) <-> ( N x. M ) = ( N x. P ) ) ) |
| 122 | 88 | adantl | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> P e. CC ) |
| 123 | 30 122 20 22 | mulcand | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. M ) = ( N x. P ) <-> M = P ) ) |
| 124 | 121 123 | bitrd | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. N ) = ( N x. P ) <-> M = P ) ) |
| 125 | 124 | biimpa | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. N ) = ( N x. P ) ) -> M = P ) |
| 126 | 116 125 | biimtrrdi | |- ( N = Q -> ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> M = P ) ) |
| 127 | 126 | com12 | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N = Q -> M = P ) ) |
| 128 | 127 | ancrd | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N = Q -> ( M = P /\ N = Q ) ) ) |
| 129 | 113 128 | mpd | |- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( M = P /\ N = Q ) ) |
| 130 | 129 | ex | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. Q ) = ( N x. P ) -> ( M = P /\ N = Q ) ) ) |
| 131 | 46 130 | sylbid | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M / N ) = ( P / Q ) -> ( M = P /\ N = Q ) ) ) |
| 132 | 131 | 3impia | |- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) /\ ( M / N ) = ( P / Q ) ) -> ( M = P /\ N = Q ) ) |