This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ghmqusnsg . (Contributed by Thierry Arnoux, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusnsg.0 | |- .0. = ( 0g ` H ) |
|
| ghmqusnsg.f | |- ( ph -> F e. ( G GrpHom H ) ) |
||
| ghmqusnsg.k | |- K = ( `' F " { .0. } ) |
||
| ghmqusnsg.q | |- Q = ( G /s ( G ~QG N ) ) |
||
| ghmqusnsg.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
||
| ghmqusnsg.n | |- ( ph -> N C_ K ) |
||
| ghmqusnsg.1 | |- ( ph -> N e. ( NrmSGrp ` G ) ) |
||
| ghmqusnsglem2.y | |- ( ph -> Y e. ( Base ` Q ) ) |
||
| Assertion | ghmqusnsglem2 | |- ( ph -> E. x e. Y ( J ` Y ) = ( F ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusnsg.0 | |- .0. = ( 0g ` H ) |
|
| 2 | ghmqusnsg.f | |- ( ph -> F e. ( G GrpHom H ) ) |
|
| 3 | ghmqusnsg.k | |- K = ( `' F " { .0. } ) |
|
| 4 | ghmqusnsg.q | |- Q = ( G /s ( G ~QG N ) ) |
|
| 5 | ghmqusnsg.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
|
| 6 | ghmqusnsg.n | |- ( ph -> N C_ K ) |
|
| 7 | ghmqusnsg.1 | |- ( ph -> N e. ( NrmSGrp ` G ) ) |
|
| 8 | ghmqusnsglem2.y | |- ( ph -> Y e. ( Base ` Q ) ) |
|
| 9 | 4 | a1i | |- ( ph -> Q = ( G /s ( G ~QG N ) ) ) |
| 10 | eqidd | |- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
|
| 11 | ovexd | |- ( ph -> ( G ~QG N ) e. _V ) |
|
| 12 | ghmgrp1 | |- ( F e. ( G GrpHom H ) -> G e. Grp ) |
|
| 13 | 2 12 | syl | |- ( ph -> G e. Grp ) |
| 14 | 9 10 11 13 | qusbas | |- ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) |
| 15 | 8 14 | eleqtrrd | |- ( ph -> Y e. ( ( Base ` G ) /. ( G ~QG N ) ) ) |
| 16 | elqsg | |- ( Y e. ( Base ` Q ) -> ( Y e. ( ( Base ` G ) /. ( G ~QG N ) ) <-> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) ) |
|
| 17 | 16 | biimpa | |- ( ( Y e. ( Base ` Q ) /\ Y e. ( ( Base ` G ) /. ( G ~QG N ) ) ) -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) |
| 18 | 8 15 17 | syl2anc | |- ( ph -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) |
| 19 | nsgsubg | |- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
|
| 20 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 21 | eqid | |- ( G ~QG N ) = ( G ~QG N ) |
|
| 22 | 20 21 | eqger | |- ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) ) |
| 23 | 7 19 22 | 3syl | |- ( ph -> ( G ~QG N ) Er ( Base ` G ) ) |
| 24 | 23 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( G ~QG N ) Er ( Base ` G ) ) |
| 25 | simplr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. ( Base ` G ) ) |
|
| 26 | ecref | |- ( ( ( G ~QG N ) Er ( Base ` G ) /\ x e. ( Base ` G ) ) -> x e. [ x ] ( G ~QG N ) ) |
|
| 27 | 24 25 26 | syl2anc | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. [ x ] ( G ~QG N ) ) |
| 28 | simpr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> Y = [ x ] ( G ~QG N ) ) |
|
| 29 | 27 28 | eleqtrrd | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. Y ) |
| 30 | 28 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` Y ) = ( J ` [ x ] ( G ~QG N ) ) ) |
| 31 | 2 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> F e. ( G GrpHom H ) ) |
| 32 | 6 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> N C_ K ) |
| 33 | 7 | ad2antrr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> N e. ( NrmSGrp ` G ) ) |
| 34 | 1 31 3 4 5 32 33 25 | ghmqusnsglem1 | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` [ x ] ( G ~QG N ) ) = ( F ` x ) ) |
| 35 | 30 34 | eqtrd | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` Y ) = ( F ` x ) ) |
| 36 | 29 35 | jca | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) |
| 37 | 36 | expl | |- ( ph -> ( ( x e. ( Base ` G ) /\ Y = [ x ] ( G ~QG N ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) ) |
| 38 | 37 | reximdv2 | |- ( ph -> ( E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) -> E. x e. Y ( J ` Y ) = ( F ` x ) ) ) |
| 39 | 18 38 | mpd | |- ( ph -> E. x e. Y ( J ` Y ) = ( F ` x ) ) |