This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmopp | |- ( F e. ( R RingHom S ) -> F e. ( ( oppR ` R ) RingHom ( oppR ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` ( oppR ` R ) ) = ( Base ` ( oppR ` R ) ) |
|
| 2 | eqid | |- ( 1r ` ( oppR ` R ) ) = ( 1r ` ( oppR ` R ) ) |
|
| 3 | eqid | |- ( 1r ` ( oppR ` S ) ) = ( 1r ` ( oppR ` S ) ) |
|
| 4 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 5 | eqid | |- ( .r ` ( oppR ` S ) ) = ( .r ` ( oppR ` S ) ) |
|
| 6 | rhmrcl1 | |- ( F e. ( R RingHom S ) -> R e. Ring ) |
|
| 7 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 8 | 7 | opprringb | |- ( R e. Ring <-> ( oppR ` R ) e. Ring ) |
| 9 | 6 8 | sylib | |- ( F e. ( R RingHom S ) -> ( oppR ` R ) e. Ring ) |
| 10 | rhmrcl2 | |- ( F e. ( R RingHom S ) -> S e. Ring ) |
|
| 11 | eqid | |- ( oppR ` S ) = ( oppR ` S ) |
|
| 12 | 11 | opprringb | |- ( S e. Ring <-> ( oppR ` S ) e. Ring ) |
| 13 | 10 12 | sylib | |- ( F e. ( R RingHom S ) -> ( oppR ` S ) e. Ring ) |
| 14 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 15 | 7 14 | oppr1 | |- ( 1r ` R ) = ( 1r ` ( oppR ` R ) ) |
| 16 | 15 | eqcomi | |- ( 1r ` ( oppR ` R ) ) = ( 1r ` R ) |
| 17 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 18 | 11 17 | oppr1 | |- ( 1r ` S ) = ( 1r ` ( oppR ` S ) ) |
| 19 | 18 | eqcomi | |- ( 1r ` ( oppR ` S ) ) = ( 1r ` S ) |
| 20 | 16 19 | rhm1 | |- ( F e. ( R RingHom S ) -> ( F ` ( 1r ` ( oppR ` R ) ) ) = ( 1r ` ( oppR ` S ) ) ) |
| 21 | simpl | |- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> F e. ( R RingHom S ) ) |
|
| 22 | simprr | |- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> y e. ( Base ` ( oppR ` R ) ) ) |
|
| 23 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 24 | 7 23 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 25 | 22 24 | eleqtrrdi | |- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> y e. ( Base ` R ) ) |
| 26 | simprl | |- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> x e. ( Base ` ( oppR ` R ) ) ) |
|
| 27 | 26 24 | eleqtrrdi | |- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> x e. ( Base ` R ) ) |
| 28 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 29 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 30 | 23 28 29 | rhmmul | |- ( ( F e. ( R RingHom S ) /\ y e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( F ` ( y ( .r ` R ) x ) ) = ( ( F ` y ) ( .r ` S ) ( F ` x ) ) ) |
| 31 | 21 25 27 30 | syl3anc | |- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> ( F ` ( y ( .r ` R ) x ) ) = ( ( F ` y ) ( .r ` S ) ( F ` x ) ) ) |
| 32 | 23 28 7 4 | opprmul | |- ( x ( .r ` ( oppR ` R ) ) y ) = ( y ( .r ` R ) x ) |
| 33 | 32 | fveq2i | |- ( F ` ( x ( .r ` ( oppR ` R ) ) y ) ) = ( F ` ( y ( .r ` R ) x ) ) |
| 34 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 35 | 34 29 11 5 | opprmul | |- ( ( F ` x ) ( .r ` ( oppR ` S ) ) ( F ` y ) ) = ( ( F ` y ) ( .r ` S ) ( F ` x ) ) |
| 36 | 31 33 35 | 3eqtr4g | |- ( ( F e. ( R RingHom S ) /\ ( x e. ( Base ` ( oppR ` R ) ) /\ y e. ( Base ` ( oppR ` R ) ) ) ) -> ( F ` ( x ( .r ` ( oppR ` R ) ) y ) ) = ( ( F ` x ) ( .r ` ( oppR ` S ) ) ( F ` y ) ) ) |
| 37 | ringgrp | |- ( ( oppR ` R ) e. Ring -> ( oppR ` R ) e. Grp ) |
|
| 38 | 9 37 | syl | |- ( F e. ( R RingHom S ) -> ( oppR ` R ) e. Grp ) |
| 39 | ringgrp | |- ( ( oppR ` S ) e. Ring -> ( oppR ` S ) e. Grp ) |
|
| 40 | 13 39 | syl | |- ( F e. ( R RingHom S ) -> ( oppR ` S ) e. Grp ) |
| 41 | 23 34 | rhmf | |- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 42 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 43 | 42 | ad2antrr | |- ( ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> F e. ( R GrpHom S ) ) |
| 44 | simplr | |- ( ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
|
| 45 | simpr | |- ( ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> y e. ( Base ` R ) ) |
|
| 46 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 47 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 48 | 23 46 47 | ghmlin | |- ( ( F e. ( R GrpHom S ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) |
| 49 | 43 44 45 48 | syl3anc | |- ( ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) -> ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) |
| 50 | 49 | ralrimiva | |- ( ( F e. ( R RingHom S ) /\ x e. ( Base ` R ) ) -> A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) |
| 51 | 50 | ralrimiva | |- ( F e. ( R RingHom S ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) |
| 52 | 41 51 | jca | |- ( F e. ( R RingHom S ) -> ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) ) |
| 53 | 38 40 52 | jca31 | |- ( F e. ( R RingHom S ) -> ( ( ( oppR ` R ) e. Grp /\ ( oppR ` S ) e. Grp ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) ) ) |
| 54 | 11 34 | opprbas | |- ( Base ` S ) = ( Base ` ( oppR ` S ) ) |
| 55 | 7 46 | oppradd | |- ( +g ` R ) = ( +g ` ( oppR ` R ) ) |
| 56 | 11 47 | oppradd | |- ( +g ` S ) = ( +g ` ( oppR ` S ) ) |
| 57 | 24 54 55 56 | isghm | |- ( F e. ( ( oppR ` R ) GrpHom ( oppR ` S ) ) <-> ( ( ( oppR ` R ) e. Grp /\ ( oppR ` S ) e. Grp ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( +g ` R ) y ) ) = ( ( F ` x ) ( +g ` S ) ( F ` y ) ) ) ) ) |
| 58 | 53 57 | sylibr | |- ( F e. ( R RingHom S ) -> F e. ( ( oppR ` R ) GrpHom ( oppR ` S ) ) ) |
| 59 | 1 2 3 4 5 9 13 20 36 58 | isrhm2d | |- ( F e. ( R RingHom S ) -> F e. ( ( oppR ` R ) RingHom ( oppR ` S ) ) ) |