This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrhmunit | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` A ) e. ( Unit ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> F e. ( R RingHom S ) ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 4 | 2 3 | unitss | |- ( Unit ` R ) C_ ( Base ` R ) |
| 5 | simpr | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> A e. ( Unit ` R ) ) |
|
| 6 | 4 5 | sselid | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> A e. ( Base ` R ) ) |
| 7 | rhmrcl1 | |- ( F e. ( R RingHom S ) -> R e. Ring ) |
|
| 8 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 9 | 2 8 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 10 | 1 7 9 | 3syl | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 11 | eqid | |- ( ||r ` R ) = ( ||r ` R ) |
|
| 12 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 13 | eqid | |- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
|
| 14 | 3 8 11 12 13 | isunit | |- ( A e. ( Unit ` R ) <-> ( A ( ||r ` R ) ( 1r ` R ) /\ A ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 15 | 5 14 | sylib | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( A ( ||r ` R ) ( 1r ` R ) /\ A ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 16 | 15 | simpld | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> A ( ||r ` R ) ( 1r ` R ) ) |
| 17 | eqid | |- ( ||r ` S ) = ( ||r ` S ) |
|
| 18 | 2 11 17 | rhmdvdsr | |- ( ( ( F e. ( R RingHom S ) /\ A e. ( Base ` R ) /\ ( 1r ` R ) e. ( Base ` R ) ) /\ A ( ||r ` R ) ( 1r ` R ) ) -> ( F ` A ) ( ||r ` S ) ( F ` ( 1r ` R ) ) ) |
| 19 | 1 6 10 16 18 | syl31anc | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` A ) ( ||r ` S ) ( F ` ( 1r ` R ) ) ) |
| 20 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 21 | 8 20 | rhm1 | |- ( F e. ( R RingHom S ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 22 | 21 | breq2d | |- ( F e. ( R RingHom S ) -> ( ( F ` A ) ( ||r ` S ) ( F ` ( 1r ` R ) ) <-> ( F ` A ) ( ||r ` S ) ( 1r ` S ) ) ) |
| 23 | 22 | adantr | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( F ` A ) ( ||r ` S ) ( F ` ( 1r ` R ) ) <-> ( F ` A ) ( ||r ` S ) ( 1r ` S ) ) ) |
| 24 | 19 23 | mpbid | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` A ) ( ||r ` S ) ( 1r ` S ) ) |
| 25 | rhmopp | |- ( F e. ( R RingHom S ) -> F e. ( ( oppR ` R ) RingHom ( oppR ` S ) ) ) |
|
| 26 | 25 | adantr | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> F e. ( ( oppR ` R ) RingHom ( oppR ` S ) ) ) |
| 27 | 15 | simprd | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> A ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 28 | 12 2 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 29 | eqid | |- ( ||r ` ( oppR ` S ) ) = ( ||r ` ( oppR ` S ) ) |
|
| 30 | 28 13 29 | rhmdvdsr | |- ( ( ( F e. ( ( oppR ` R ) RingHom ( oppR ` S ) ) /\ A e. ( Base ` R ) /\ ( 1r ` R ) e. ( Base ` R ) ) /\ A ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) -> ( F ` A ) ( ||r ` ( oppR ` S ) ) ( F ` ( 1r ` R ) ) ) |
| 31 | 26 6 10 27 30 | syl31anc | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` A ) ( ||r ` ( oppR ` S ) ) ( F ` ( 1r ` R ) ) ) |
| 32 | 21 | breq2d | |- ( F e. ( R RingHom S ) -> ( ( F ` A ) ( ||r ` ( oppR ` S ) ) ( F ` ( 1r ` R ) ) <-> ( F ` A ) ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) ) |
| 33 | 32 | adantr | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( ( F ` A ) ( ||r ` ( oppR ` S ) ) ( F ` ( 1r ` R ) ) <-> ( F ` A ) ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) ) |
| 34 | 31 33 | mpbid | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` A ) ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) |
| 35 | eqid | |- ( Unit ` S ) = ( Unit ` S ) |
|
| 36 | eqid | |- ( oppR ` S ) = ( oppR ` S ) |
|
| 37 | 35 20 17 36 29 | isunit | |- ( ( F ` A ) e. ( Unit ` S ) <-> ( ( F ` A ) ( ||r ` S ) ( 1r ` S ) /\ ( F ` A ) ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) ) |
| 38 | 24 34 37 | sylanbrc | |- ( ( F e. ( R RingHom S ) /\ A e. ( Unit ` R ) ) -> ( F ` A ) e. ( Unit ` S ) ) |