This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bidirectional form of opprring . (Contributed by Mario Carneiro, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprbas.1 | |- O = ( oppR ` R ) |
|
| Assertion | opprringb | |- ( R e. Ring <-> O e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | |- O = ( oppR ` R ) |
|
| 2 | 1 | opprring | |- ( R e. Ring -> O e. Ring ) |
| 3 | eqid | |- ( oppR ` O ) = ( oppR ` O ) |
|
| 4 | 3 | opprring | |- ( O e. Ring -> ( oppR ` O ) e. Ring ) |
| 5 | eqidd | |- ( T. -> ( Base ` R ) = ( Base ` R ) ) |
|
| 6 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 7 | 1 6 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 8 | 3 7 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` O ) ) |
| 9 | 8 | a1i | |- ( T. -> ( Base ` R ) = ( Base ` ( oppR ` O ) ) ) |
| 10 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 11 | 1 10 | oppradd | |- ( +g ` R ) = ( +g ` O ) |
| 12 | 3 11 | oppradd | |- ( +g ` R ) = ( +g ` ( oppR ` O ) ) |
| 13 | 12 | oveqi | |- ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y ) |
| 14 | 13 | a1i | |- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( oppR ` O ) ) y ) ) |
| 15 | eqid | |- ( .r ` O ) = ( .r ` O ) |
|
| 16 | eqid | |- ( .r ` ( oppR ` O ) ) = ( .r ` ( oppR ` O ) ) |
|
| 17 | 7 15 3 16 | opprmul | |- ( x ( .r ` ( oppR ` O ) ) y ) = ( y ( .r ` O ) x ) |
| 18 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 19 | 6 18 1 15 | opprmul | |- ( y ( .r ` O ) x ) = ( x ( .r ` R ) y ) |
| 20 | 17 19 | eqtr2i | |- ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y ) |
| 21 | 20 | a1i | |- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` ( oppR ` O ) ) y ) ) |
| 22 | 5 9 14 21 | ringpropd | |- ( T. -> ( R e. Ring <-> ( oppR ` O ) e. Ring ) ) |
| 23 | 22 | mptru | |- ( R e. Ring <-> ( oppR ` O ) e. Ring ) |
| 24 | 4 23 | sylibr | |- ( O e. Ring -> R e. Ring ) |
| 25 | 2 24 | impbii | |- ( R e. Ring <-> O e. Ring ) |