This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a uniform topological space to an open set is a uniform space. (Contributed by Thierry Arnoux, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressusp.1 | |- B = ( Base ` W ) |
|
| ressusp.2 | |- J = ( TopOpen ` W ) |
||
| Assertion | ressusp | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( W |`s A ) e. UnifSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressusp.1 | |- B = ( Base ` W ) |
|
| 2 | ressusp.2 | |- J = ( TopOpen ` W ) |
|
| 3 | ressuss | |- ( A e. J -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
| 5 | simp1 | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> W e. UnifSp ) |
|
| 6 | eqid | |- ( UnifSt ` W ) = ( UnifSt ` W ) |
|
| 7 | 1 6 2 | isusp | |- ( W e. UnifSp <-> ( ( UnifSt ` W ) e. ( UnifOn ` B ) /\ J = ( unifTop ` ( UnifSt ` W ) ) ) ) |
| 8 | 5 7 | sylib | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( ( UnifSt ` W ) e. ( UnifOn ` B ) /\ J = ( unifTop ` ( UnifSt ` W ) ) ) ) |
| 9 | 8 | simpld | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifSt ` W ) e. ( UnifOn ` B ) ) |
| 10 | simp2 | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> W e. TopSp ) |
|
| 11 | 1 2 | istps | |- ( W e. TopSp <-> J e. ( TopOn ` B ) ) |
| 12 | 10 11 | sylib | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> J e. ( TopOn ` B ) ) |
| 13 | simp3 | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> A e. J ) |
|
| 14 | toponss | |- ( ( J e. ( TopOn ` B ) /\ A e. J ) -> A C_ B ) |
|
| 15 | 12 13 14 | syl2anc | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> A C_ B ) |
| 16 | trust | |- ( ( ( UnifSt ` W ) e. ( UnifOn ` B ) /\ A C_ B ) -> ( ( UnifSt ` W ) |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
|
| 17 | 9 15 16 | syl2anc | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( ( UnifSt ` W ) |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
| 18 | 4 17 | eqeltrd | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifSt ` ( W |`s A ) ) e. ( UnifOn ` A ) ) |
| 19 | eqid | |- ( W |`s A ) = ( W |`s A ) |
|
| 20 | 19 1 | ressbas2 | |- ( A C_ B -> A = ( Base ` ( W |`s A ) ) ) |
| 21 | 15 20 | syl | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> A = ( Base ` ( W |`s A ) ) ) |
| 22 | 21 | fveq2d | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifOn ` A ) = ( UnifOn ` ( Base ` ( W |`s A ) ) ) ) |
| 23 | 18 22 | eleqtrd | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifSt ` ( W |`s A ) ) e. ( UnifOn ` ( Base ` ( W |`s A ) ) ) ) |
| 24 | 8 | simprd | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> J = ( unifTop ` ( UnifSt ` W ) ) ) |
| 25 | 13 24 | eleqtrd | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> A e. ( unifTop ` ( UnifSt ` W ) ) ) |
| 26 | restutopopn | |- ( ( ( UnifSt ` W ) e. ( UnifOn ` B ) /\ A e. ( unifTop ` ( UnifSt ` W ) ) ) -> ( ( unifTop ` ( UnifSt ` W ) ) |`t A ) = ( unifTop ` ( ( UnifSt ` W ) |`t ( A X. A ) ) ) ) |
|
| 27 | 9 25 26 | syl2anc | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( ( unifTop ` ( UnifSt ` W ) ) |`t A ) = ( unifTop ` ( ( UnifSt ` W ) |`t ( A X. A ) ) ) ) |
| 28 | 24 | oveq1d | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( J |`t A ) = ( ( unifTop ` ( UnifSt ` W ) ) |`t A ) ) |
| 29 | 4 | fveq2d | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( unifTop ` ( UnifSt ` ( W |`s A ) ) ) = ( unifTop ` ( ( UnifSt ` W ) |`t ( A X. A ) ) ) ) |
| 30 | 27 28 29 | 3eqtr4d | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( J |`t A ) = ( unifTop ` ( UnifSt ` ( W |`s A ) ) ) ) |
| 31 | eqid | |- ( Base ` ( W |`s A ) ) = ( Base ` ( W |`s A ) ) |
|
| 32 | eqid | |- ( UnifSt ` ( W |`s A ) ) = ( UnifSt ` ( W |`s A ) ) |
|
| 33 | 19 2 | resstopn | |- ( J |`t A ) = ( TopOpen ` ( W |`s A ) ) |
| 34 | 31 32 33 | isusp | |- ( ( W |`s A ) e. UnifSp <-> ( ( UnifSt ` ( W |`s A ) ) e. ( UnifOn ` ( Base ` ( W |`s A ) ) ) /\ ( J |`t A ) = ( unifTop ` ( UnifSt ` ( W |`s A ) ) ) ) ) |
| 35 | 23 30 34 | sylanbrc | |- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( W |`s A ) e. UnifSp ) |