This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tusval | |- ( U e. ( UnifOn ` X ) -> ( toUnifSp ` U ) = ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tus | |- toUnifSp = ( u e. U. ran UnifOn |-> ( { <. ( Base ` ndx ) , dom U. u >. , <. ( UnifSet ` ndx ) , u >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` u ) >. ) ) |
|
| 2 | simpr | |- ( ( U e. ( UnifOn ` X ) /\ u = U ) -> u = U ) |
|
| 3 | 2 | unieqd | |- ( ( U e. ( UnifOn ` X ) /\ u = U ) -> U. u = U. U ) |
| 4 | 3 | dmeqd | |- ( ( U e. ( UnifOn ` X ) /\ u = U ) -> dom U. u = dom U. U ) |
| 5 | 4 | opeq2d | |- ( ( U e. ( UnifOn ` X ) /\ u = U ) -> <. ( Base ` ndx ) , dom U. u >. = <. ( Base ` ndx ) , dom U. U >. ) |
| 6 | 2 | opeq2d | |- ( ( U e. ( UnifOn ` X ) /\ u = U ) -> <. ( UnifSet ` ndx ) , u >. = <. ( UnifSet ` ndx ) , U >. ) |
| 7 | 5 6 | preq12d | |- ( ( U e. ( UnifOn ` X ) /\ u = U ) -> { <. ( Base ` ndx ) , dom U. u >. , <. ( UnifSet ` ndx ) , u >. } = { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) |
| 8 | 2 | fveq2d | |- ( ( U e. ( UnifOn ` X ) /\ u = U ) -> ( unifTop ` u ) = ( unifTop ` U ) ) |
| 9 | 8 | opeq2d | |- ( ( U e. ( UnifOn ` X ) /\ u = U ) -> <. ( TopSet ` ndx ) , ( unifTop ` u ) >. = <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) |
| 10 | 7 9 | oveq12d | |- ( ( U e. ( UnifOn ` X ) /\ u = U ) -> ( { <. ( Base ` ndx ) , dom U. u >. , <. ( UnifSet ` ndx ) , u >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` u ) >. ) = ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 11 | elfvunirn | |- ( U e. ( UnifOn ` X ) -> U e. U. ran UnifOn ) |
|
| 12 | ovexd | |- ( U e. ( UnifOn ` X ) -> ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) e. _V ) |
|
| 13 | 1 10 11 12 | fvmptd2 | |- ( U e. ( UnifOn ` X ) -> ( toUnifSp ` U ) = ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |