This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a uniform topological space to an open set is a uniform space. (Contributed by Thierry Arnoux, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressusp.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| ressusp.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| Assertion | ressusp | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( 𝑊 ↾s 𝐴 ) ∈ UnifSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressusp.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | ressusp.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 3 | ressuss | ⊢ ( 𝐴 ∈ 𝐽 → ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) |
| 5 | simp1 | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → 𝑊 ∈ UnifSp ) | |
| 6 | eqid | ⊢ ( UnifSt ‘ 𝑊 ) = ( UnifSt ‘ 𝑊 ) | |
| 7 | 1 6 2 | isusp | ⊢ ( 𝑊 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ 𝐵 ) ∧ 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) ) |
| 8 | 5 7 | sylib | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ 𝐵 ) ∧ 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) ) |
| 9 | 8 | simpld | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ 𝐵 ) ) |
| 10 | simp2 | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → 𝑊 ∈ TopSp ) | |
| 11 | 1 2 | istps | ⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 12 | 10 11 | sylib | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 13 | simp3 | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ∈ 𝐽 ) | |
| 14 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝐵 ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝐵 ) |
| 16 | trust | ⊢ ( ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ 𝐵 ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) | |
| 17 | 9 15 16 | syl2anc | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) |
| 18 | 4 17 | eqeltrd | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) |
| 19 | eqid | ⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) | |
| 20 | 19 1 | ressbas2 | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 21 | 15 20 | syl | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → 𝐴 = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( UnifOn ‘ 𝐴 ) = ( UnifOn ‘ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
| 23 | 18 22 | eleqtrd | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ∈ ( UnifOn ‘ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
| 24 | 8 | simprd | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) |
| 25 | 13 24 | eleqtrd | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) |
| 26 | restutopopn | ⊢ ( ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ 𝐵 ) ∧ 𝐴 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) → ( ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ↾t 𝐴 ) = ( unifTop ‘ ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) ) | |
| 27 | 9 25 26 | syl2anc | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ↾t 𝐴 ) = ( unifTop ‘ ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| 28 | 24 | oveq1d | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( 𝐽 ↾t 𝐴 ) = ( ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ↾t 𝐴 ) ) |
| 29 | 4 | fveq2d | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( unifTop ‘ ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ) = ( unifTop ‘ ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| 30 | 27 28 29 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( 𝐽 ↾t 𝐴 ) = ( unifTop ‘ ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
| 31 | eqid | ⊢ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) | |
| 32 | eqid | ⊢ ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) | |
| 33 | 19 2 | resstopn | ⊢ ( 𝐽 ↾t 𝐴 ) = ( TopOpen ‘ ( 𝑊 ↾s 𝐴 ) ) |
| 34 | 31 32 33 | isusp | ⊢ ( ( 𝑊 ↾s 𝐴 ) ∈ UnifSp ↔ ( ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ∈ ( UnifOn ‘ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ ( 𝐽 ↾t 𝐴 ) = ( unifTop ‘ ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) ) |
| 35 | 23 30 34 | sylanbrc | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴 ∈ 𝐽 ) → ( 𝑊 ↾s 𝐴 ) ∈ UnifSp ) |