This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcres2 | |- ( R e. ( Subcat ` D ) -> ( C Func ( D |`cat R ) ) C_ ( C Func D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc | |- Rel ( C Func ( D |`cat R ) ) |
|
| 2 | 1 | a1i | |- ( R e. ( Subcat ` D ) -> Rel ( C Func ( D |`cat R ) ) ) |
| 3 | simpr | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> f ( C Func ( D |`cat R ) ) g ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 6 | simpl | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> R e. ( Subcat ` D ) ) |
|
| 7 | eqidd | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> dom dom R = dom dom R ) |
|
| 8 | 6 7 | subcfn | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> R Fn ( dom dom R X. dom dom R ) ) |
| 9 | eqid | |- ( Base ` ( D |`cat R ) ) = ( Base ` ( D |`cat R ) ) |
|
| 10 | 4 9 3 | funcf1 | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> f : ( Base ` C ) --> ( Base ` ( D |`cat R ) ) ) |
| 11 | eqid | |- ( D |`cat R ) = ( D |`cat R ) |
|
| 12 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 13 | subcrcl | |- ( R e. ( Subcat ` D ) -> D e. Cat ) |
|
| 14 | 13 | adantr | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> D e. Cat ) |
| 15 | 6 8 12 | subcss1 | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> dom dom R C_ ( Base ` D ) ) |
| 16 | 11 12 14 8 15 | rescbas | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> dom dom R = ( Base ` ( D |`cat R ) ) ) |
| 17 | 16 | feq3d | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> ( f : ( Base ` C ) --> dom dom R <-> f : ( Base ` C ) --> ( Base ` ( D |`cat R ) ) ) ) |
| 18 | 10 17 | mpbird | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> f : ( Base ` C ) --> dom dom R ) |
| 19 | eqid | |- ( Hom ` ( D |`cat R ) ) = ( Hom ` ( D |`cat R ) ) |
|
| 20 | simplr | |- ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> f ( C Func ( D |`cat R ) ) g ) |
|
| 21 | simprl | |- ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 22 | simprr | |- ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 23 | 4 5 19 20 21 22 | funcf2 | |- ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x g y ) : ( x ( Hom ` C ) y ) --> ( ( f ` x ) ( Hom ` ( D |`cat R ) ) ( f ` y ) ) ) |
| 24 | 11 12 14 8 15 | reschom | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> R = ( Hom ` ( D |`cat R ) ) ) |
| 25 | 24 | adantr | |- ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> R = ( Hom ` ( D |`cat R ) ) ) |
| 26 | 25 | oveqd | |- ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( f ` x ) R ( f ` y ) ) = ( ( f ` x ) ( Hom ` ( D |`cat R ) ) ( f ` y ) ) ) |
| 27 | 26 | feq3d | |- ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( x g y ) : ( x ( Hom ` C ) y ) --> ( ( f ` x ) R ( f ` y ) ) <-> ( x g y ) : ( x ( Hom ` C ) y ) --> ( ( f ` x ) ( Hom ` ( D |`cat R ) ) ( f ` y ) ) ) ) |
| 28 | 23 27 | mpbird | |- ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x g y ) : ( x ( Hom ` C ) y ) --> ( ( f ` x ) R ( f ` y ) ) ) |
| 29 | 4 5 6 8 18 28 | funcres2b | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> ( f ( C Func D ) g <-> f ( C Func ( D |`cat R ) ) g ) ) |
| 30 | 3 29 | mpbird | |- ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> f ( C Func D ) g ) |
| 31 | 30 | ex | |- ( R e. ( Subcat ` D ) -> ( f ( C Func ( D |`cat R ) ) g -> f ( C Func D ) g ) ) |
| 32 | df-br | |- ( f ( C Func ( D |`cat R ) ) g <-> <. f , g >. e. ( C Func ( D |`cat R ) ) ) |
|
| 33 | df-br | |- ( f ( C Func D ) g <-> <. f , g >. e. ( C Func D ) ) |
|
| 34 | 31 32 33 | 3imtr3g | |- ( R e. ( Subcat ` D ) -> ( <. f , g >. e. ( C Func ( D |`cat R ) ) -> <. f , g >. e. ( C Func D ) ) ) |
| 35 | 2 34 | relssdv | |- ( R e. ( Subcat ` D ) -> ( C Func ( D |`cat R ) ) C_ ( C Func D ) ) |