This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a full functor to also be a full functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ffthres2c.a | |- A = ( Base ` C ) |
|
| ffthres2c.e | |- E = ( D |`s S ) |
||
| ffthres2c.d | |- ( ph -> D e. Cat ) |
||
| ffthres2c.r | |- ( ph -> S e. V ) |
||
| ffthres2c.1 | |- ( ph -> F : A --> S ) |
||
| Assertion | fullres2c | |- ( ph -> ( F ( C Full D ) G <-> F ( C Full E ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffthres2c.a | |- A = ( Base ` C ) |
|
| 2 | ffthres2c.e | |- E = ( D |`s S ) |
|
| 3 | ffthres2c.d | |- ( ph -> D e. Cat ) |
|
| 4 | ffthres2c.r | |- ( ph -> S e. V ) |
|
| 5 | ffthres2c.1 | |- ( ph -> F : A --> S ) |
|
| 6 | 1 2 3 4 5 | funcres2c | |- ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |
| 7 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 8 | 2 7 | resshom | |- ( S e. V -> ( Hom ` D ) = ( Hom ` E ) ) |
| 9 | 4 8 | syl | |- ( ph -> ( Hom ` D ) = ( Hom ` E ) ) |
| 10 | 9 | oveqd | |- ( ph -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) |
| 11 | 10 | eqeq2d | |- ( ph -> ( ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) <-> ran ( x G y ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) ) |
| 12 | 11 | 2ralbidv | |- ( ph -> ( A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) <-> A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) ) |
| 13 | 6 12 | anbi12d | |- ( ph -> ( ( F ( C Func D ) G /\ A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) <-> ( F ( C Func E ) G /\ A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) ) ) |
| 14 | 1 7 | isfull | |- ( F ( C Full D ) G <-> ( F ( C Func D ) G /\ A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) |
| 15 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 16 | 1 15 | isfull | |- ( F ( C Full E ) G <-> ( F ( C Func E ) G /\ A. x e. A A. y e. A ran ( x G y ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) ) |
| 17 | 13 14 16 | 3bitr4g | |- ( ph -> ( F ( C Full D ) G <-> F ( C Full E ) G ) ) |