This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resscat | |- ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 2 | 1 | ressinbas | |- ( S e. V -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
| 3 | 2 | adantl | |- ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
| 4 | eqid | |- ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) = ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) |
|
| 5 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 6 | simpl | |- ( ( C e. Cat /\ S e. V ) -> C e. Cat ) |
|
| 7 | inss2 | |- ( S i^i ( Base ` C ) ) C_ ( Base ` C ) |
|
| 8 | 7 | a1i | |- ( ( C e. Cat /\ S e. V ) -> ( S i^i ( Base ` C ) ) C_ ( Base ` C ) ) |
| 9 | 1 5 6 8 | fullsubc | |- ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) e. ( Subcat ` C ) ) |
| 10 | 4 9 | subccat | |- ( ( C e. Cat /\ S e. V ) -> ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) e. Cat ) |
| 11 | eqid | |- ( C |`s ( S i^i ( Base ` C ) ) ) = ( C |`s ( S i^i ( Base ` C ) ) ) |
|
| 12 | 1 5 6 8 11 4 | fullresc | |- ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) /\ ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) ) |
| 13 | 12 | simpld | |- ( ( C e. Cat /\ S e. V ) -> ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
| 14 | 12 | simprd | |- ( ( C e. Cat /\ S e. V ) -> ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
| 15 | ovexd | |- ( ( C e. Cat /\ S e. V ) -> ( C |`s ( S i^i ( Base ` C ) ) ) e. _V ) |
|
| 16 | 13 14 15 10 | catpropd | |- ( ( C e. Cat /\ S e. V ) -> ( ( C |`s ( S i^i ( Base ` C ) ) ) e. Cat <-> ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) e. Cat ) ) |
| 17 | 10 16 | mpbird | |- ( ( C e. Cat /\ S e. V ) -> ( C |`s ( S i^i ( Base ` C ) ) ) e. Cat ) |
| 18 | 3 17 | eqeltrd | |- ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) e. Cat ) |