This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullsubc.b | |- B = ( Base ` C ) |
|
| fullsubc.h | |- H = ( Homf ` C ) |
||
| fullsubc.c | |- ( ph -> C e. Cat ) |
||
| fullsubc.s | |- ( ph -> S C_ B ) |
||
| fullsubc.d | |- D = ( C |`s S ) |
||
| fullsubc.e | |- E = ( C |`cat ( H |` ( S X. S ) ) ) |
||
| Assertion | fullresc | |- ( ph -> ( ( Homf ` D ) = ( Homf ` E ) /\ ( comf ` D ) = ( comf ` E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullsubc.b | |- B = ( Base ` C ) |
|
| 2 | fullsubc.h | |- H = ( Homf ` C ) |
|
| 3 | fullsubc.c | |- ( ph -> C e. Cat ) |
|
| 4 | fullsubc.s | |- ( ph -> S C_ B ) |
|
| 5 | fullsubc.d | |- D = ( C |`s S ) |
|
| 6 | fullsubc.e | |- E = ( C |`cat ( H |` ( S X. S ) ) ) |
|
| 7 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 8 | 4 | adantr | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> S C_ B ) |
| 9 | simprl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> x e. S ) |
|
| 10 | 8 9 | sseldd | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> x e. B ) |
| 11 | simprr | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> y e. S ) |
|
| 12 | 8 11 | sseldd | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> y e. B ) |
| 13 | 2 1 7 10 12 | homfval | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x H y ) = ( x ( Hom ` C ) y ) ) |
| 14 | 9 11 | ovresd | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( H |` ( S X. S ) ) y ) = ( x H y ) ) |
| 15 | 2 1 | homffn | |- H Fn ( B X. B ) |
| 16 | xpss12 | |- ( ( S C_ B /\ S C_ B ) -> ( S X. S ) C_ ( B X. B ) ) |
|
| 17 | 4 4 16 | syl2anc | |- ( ph -> ( S X. S ) C_ ( B X. B ) ) |
| 18 | fnssres | |- ( ( H Fn ( B X. B ) /\ ( S X. S ) C_ ( B X. B ) ) -> ( H |` ( S X. S ) ) Fn ( S X. S ) ) |
|
| 19 | 15 17 18 | sylancr | |- ( ph -> ( H |` ( S X. S ) ) Fn ( S X. S ) ) |
| 20 | 6 1 3 19 4 | reschom | |- ( ph -> ( H |` ( S X. S ) ) = ( Hom ` E ) ) |
| 21 | 20 | oveqdr | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( H |` ( S X. S ) ) y ) = ( x ( Hom ` E ) y ) ) |
| 22 | 14 21 | eqtr3d | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x H y ) = ( x ( Hom ` E ) y ) ) |
| 23 | 5 1 | ressbas2 | |- ( S C_ B -> S = ( Base ` D ) ) |
| 24 | 4 23 | syl | |- ( ph -> S = ( Base ` D ) ) |
| 25 | fvex | |- ( Base ` D ) e. _V |
|
| 26 | 24 25 | eqeltrdi | |- ( ph -> S e. _V ) |
| 27 | 5 7 | resshom | |- ( S e. _V -> ( Hom ` C ) = ( Hom ` D ) ) |
| 28 | 26 27 | syl | |- ( ph -> ( Hom ` C ) = ( Hom ` D ) ) |
| 29 | 28 | oveqdr | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
| 30 | 13 22 29 | 3eqtr3rd | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( Hom ` D ) y ) = ( x ( Hom ` E ) y ) ) |
| 31 | 30 | ralrimivva | |- ( ph -> A. x e. S A. y e. S ( x ( Hom ` D ) y ) = ( x ( Hom ` E ) y ) ) |
| 32 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 33 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 34 | 6 1 3 19 4 | rescbas | |- ( ph -> S = ( Base ` E ) ) |
| 35 | 32 33 24 34 | homfeq | |- ( ph -> ( ( Homf ` D ) = ( Homf ` E ) <-> A. x e. S A. y e. S ( x ( Hom ` D ) y ) = ( x ( Hom ` E ) y ) ) ) |
| 36 | 31 35 | mpbird | |- ( ph -> ( Homf ` D ) = ( Homf ` E ) ) |
| 37 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 38 | 5 37 | ressco | |- ( S e. _V -> ( comp ` C ) = ( comp ` D ) ) |
| 39 | 26 38 | syl | |- ( ph -> ( comp ` C ) = ( comp ` D ) ) |
| 40 | 6 1 3 19 4 37 | rescco | |- ( ph -> ( comp ` C ) = ( comp ` E ) ) |
| 41 | 39 40 | eqtr3d | |- ( ph -> ( comp ` D ) = ( comp ` E ) ) |
| 42 | 41 36 | comfeqd | |- ( ph -> ( comf ` D ) = ( comf ` E ) ) |
| 43 | 36 42 | jca | |- ( ph -> ( ( Homf ` D ) = ( Homf ` E ) /\ ( comf ` D ) = ( comf ` E ) ) ) |