This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmhm2.u | |- U = ( T |`s X ) |
|
| Assertion | resmhm2b | |- ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmhm2.u | |- U = ( T |`s X ) |
|
| 2 | mhmrcl1 | |- ( F e. ( S MndHom T ) -> S e. Mnd ) |
|
| 3 | 2 | adantl | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> S e. Mnd ) |
| 4 | 1 | submmnd | |- ( X e. ( SubMnd ` T ) -> U e. Mnd ) |
| 5 | 4 | ad2antrr | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> U e. Mnd ) |
| 6 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 7 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 8 | 6 7 | mhmf | |- ( F e. ( S MndHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 9 | 8 | adantl | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 10 | 9 | ffnd | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F Fn ( Base ` S ) ) |
| 11 | simplr | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ran F C_ X ) |
|
| 12 | df-f | |- ( F : ( Base ` S ) --> X <-> ( F Fn ( Base ` S ) /\ ran F C_ X ) ) |
|
| 13 | 10 11 12 | sylanbrc | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F : ( Base ` S ) --> X ) |
| 14 | 1 | submbas | |- ( X e. ( SubMnd ` T ) -> X = ( Base ` U ) ) |
| 15 | 14 | ad2antrr | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> X = ( Base ` U ) ) |
| 16 | 15 | feq3d | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F : ( Base ` S ) --> X <-> F : ( Base ` S ) --> ( Base ` U ) ) ) |
| 17 | 13 16 | mpbid | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F : ( Base ` S ) --> ( Base ` U ) ) |
| 18 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 19 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 20 | 6 18 19 | mhmlin | |- ( ( F e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 21 | 20 | 3expb | |- ( ( F e. ( S MndHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 22 | 21 | adantll | |- ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 23 | 1 19 | ressplusg | |- ( X e. ( SubMnd ` T ) -> ( +g ` T ) = ( +g ` U ) ) |
| 24 | 23 | ad3antrrr | |- ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) |
| 25 | 24 | oveqd | |- ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 26 | 22 25 | eqtrd | |- ( ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 27 | 26 | ralrimivva | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 28 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 29 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 30 | 28 29 | mhm0 | |- ( F e. ( S MndHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 31 | 30 | adantl | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 32 | 1 29 | subm0 | |- ( X e. ( SubMnd ` T ) -> ( 0g ` T ) = ( 0g ` U ) ) |
| 33 | 32 | ad2antrr | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( 0g ` T ) = ( 0g ` U ) ) |
| 34 | 31 33 | eqtrd | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) |
| 35 | 17 27 34 | 3jca | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) ) |
| 36 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 37 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 38 | eqid | |- ( 0g ` U ) = ( 0g ` U ) |
|
| 39 | 6 36 18 37 28 38 | ismhm | |- ( F e. ( S MndHom U ) <-> ( ( S e. Mnd /\ U e. Mnd ) /\ ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) ) ) |
| 40 | 3 5 35 39 | syl21anbrc | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom T ) ) -> F e. ( S MndHom U ) ) |
| 41 | 1 | resmhm2 | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F e. ( S MndHom T ) ) |
| 42 | 41 | ancoms | |- ( ( X e. ( SubMnd ` T ) /\ F e. ( S MndHom U ) ) -> F e. ( S MndHom T ) ) |
| 43 | 42 | adantlr | |- ( ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) /\ F e. ( S MndHom U ) ) -> F e. ( S MndHom T ) ) |
| 44 | 40 43 | impbida | |- ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |