This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015) (Revised by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resghm2.u | |- U = ( T |`s X ) |
|
| Assertion | resghm2b | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resghm2.u | |- U = ( T |`s X ) |
|
| 2 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 3 | 2 | a1i | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) -> S e. Grp ) ) |
| 4 | ghmgrp1 | |- ( F e. ( S GrpHom U ) -> S e. Grp ) |
|
| 5 | 4 | a1i | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom U ) -> S e. Grp ) ) |
| 6 | subgsubm | |- ( X e. ( SubGrp ` T ) -> X e. ( SubMnd ` T ) ) |
|
| 7 | 1 | resmhm2b | |- ( ( X e. ( SubMnd ` T ) /\ ran F C_ X ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |
| 8 | 6 7 | sylan | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |
| 9 | 8 | adantl | |- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( F e. ( S MndHom T ) <-> F e. ( S MndHom U ) ) ) |
| 10 | subgrcl | |- ( X e. ( SubGrp ` T ) -> T e. Grp ) |
|
| 11 | 10 | adantr | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> T e. Grp ) |
| 12 | ghmmhmb | |- ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
|
| 13 | 11 12 | sylan2 | |- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
| 14 | 13 | eleq2d | |- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( F e. ( S GrpHom T ) <-> F e. ( S MndHom T ) ) ) |
| 15 | 1 | subggrp | |- ( X e. ( SubGrp ` T ) -> U e. Grp ) |
| 16 | 15 | adantr | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> U e. Grp ) |
| 17 | ghmmhmb | |- ( ( S e. Grp /\ U e. Grp ) -> ( S GrpHom U ) = ( S MndHom U ) ) |
|
| 18 | 16 17 | sylan2 | |- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( S GrpHom U ) = ( S MndHom U ) ) |
| 19 | 18 | eleq2d | |- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( F e. ( S GrpHom U ) <-> F e. ( S MndHom U ) ) ) |
| 20 | 9 14 19 | 3bitr4d | |- ( ( S e. Grp /\ ( X e. ( SubGrp ` T ) /\ ran F C_ X ) ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |
| 21 | 20 | expcom | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( S e. Grp -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) ) |
| 22 | 3 5 21 | pm5.21ndd | |- ( ( X e. ( SubGrp ` T ) /\ ran F C_ X ) -> ( F e. ( S GrpHom T ) <-> F e. ( S GrpHom U ) ) ) |