This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b analog. (Contributed by SN, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resrhm2b.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| Assertion | resrhm2b | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 RingHom 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resrhm2b.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| 2 | subrgsubg | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) | |
| 3 | 1 | resghm2b | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |
| 5 | eqid | ⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) | |
| 6 | 5 | subrgsubm | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑇 ) ) ) |
| 7 | eqid | ⊢ ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) = ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) | |
| 8 | 7 | resmhm2b | ⊢ ( ( 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑇 ) ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ↔ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) ) ) ) |
| 9 | 6 8 | sylan | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ↔ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) ) ) ) |
| 10 | subrgrcl | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → 𝑇 ∈ Ring ) | |
| 11 | 1 5 | mgpress | ⊢ ( ( 𝑇 ∈ Ring ∧ 𝑋 ∈ ( SubRing ‘ 𝑇 ) ) → ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
| 12 | 10 11 | mpancom | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( mulGrp ‘ 𝑆 ) MndHom ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) ) = ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
| 15 | 14 | eleq2d | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( ( mulGrp ‘ 𝑇 ) ↾s 𝑋 ) ) ↔ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) |
| 16 | 9 15 | bitrd | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ↔ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) |
| 17 | 4 16 | anbi12d | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) |
| 18 | 17 | anbi2d | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ↔ ( 𝑆 ∈ Ring ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) ) |
| 19 | 10 | adantr | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → 𝑇 ∈ Ring ) |
| 20 | 19 | biantrud | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝑆 ∈ Ring ↔ ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ) ) |
| 21 | 20 | anbi1d | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ) ) |
| 22 | 1 | subrgring | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) → 𝑈 ∈ Ring ) |
| 23 | 22 | adantr | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → 𝑈 ∈ Ring ) |
| 24 | 23 | biantrud | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝑆 ∈ Ring ↔ ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ) ) |
| 25 | 24 | anbi1d | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) ) |
| 26 | 18 21 25 | 3bitr3d | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) ) |
| 27 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 28 | 27 5 | isrhm | ⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ) |
| 29 | eqid | ⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) | |
| 30 | 27 29 | isrhm | ⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑈 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) |
| 31 | 26 28 30 | 3bitr4g | ⊢ ( ( 𝑋 ∈ ( SubRing ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 RingHom 𝑈 ) ) ) |