This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescval.1 | |- D = ( C |`cat H ) |
|
| rescval2.1 | |- ( ph -> C e. V ) |
||
| rescval2.2 | |- ( ph -> S e. W ) |
||
| rescval2.3 | |- ( ph -> H Fn ( S X. S ) ) |
||
| Assertion | rescval2 | |- ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescval.1 | |- D = ( C |`cat H ) |
|
| 2 | rescval2.1 | |- ( ph -> C e. V ) |
|
| 3 | rescval2.2 | |- ( ph -> S e. W ) |
|
| 4 | rescval2.3 | |- ( ph -> H Fn ( S X. S ) ) |
|
| 5 | 3 3 | xpexd | |- ( ph -> ( S X. S ) e. _V ) |
| 6 | fnex | |- ( ( H Fn ( S X. S ) /\ ( S X. S ) e. _V ) -> H e. _V ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ph -> H e. _V ) |
| 8 | 1 | rescval | |- ( ( C e. V /\ H e. _V ) -> D = ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 9 | 2 7 8 | syl2anc | |- ( ph -> D = ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 10 | 4 | fndmd | |- ( ph -> dom H = ( S X. S ) ) |
| 11 | 10 | dmeqd | |- ( ph -> dom dom H = dom ( S X. S ) ) |
| 12 | dmxpid | |- dom ( S X. S ) = S |
|
| 13 | 11 12 | eqtrdi | |- ( ph -> dom dom H = S ) |
| 14 | 13 | oveq2d | |- ( ph -> ( C |`s dom dom H ) = ( C |`s S ) ) |
| 15 | 14 | oveq1d | |- ( ph -> ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 16 | 9 15 | eqtrd | |- ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |