This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Different components can be set in any order. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setscom.1 | |- A e. _V |
|
| setscom.2 | |- B e. _V |
||
| Assertion | setscom | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( S sSet <. A , C >. ) sSet <. B , D >. ) = ( ( S sSet <. B , D >. ) sSet <. A , C >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setscom.1 | |- A e. _V |
|
| 2 | setscom.2 | |- B e. _V |
|
| 3 | rescom | |- ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) = ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) |
|
| 4 | 3 | uneq1i | |- ( ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) u. { <. A , C >. } ) = ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) |
| 5 | 4 | uneq1i | |- ( ( ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) u. { <. A , C >. } ) u. { <. B , D >. } ) = ( ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) u. { <. B , D >. } ) |
| 6 | un23 | |- ( ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) u. { <. B , D >. } ) = ( ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. { <. B , D >. } ) u. { <. A , C >. } ) |
|
| 7 | 5 6 | eqtri | |- ( ( ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) u. { <. A , C >. } ) u. { <. B , D >. } ) = ( ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. { <. B , D >. } ) u. { <. A , C >. } ) |
| 8 | setsval | |- ( ( S e. V /\ C e. W ) -> ( S sSet <. A , C >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , C >. } ) ) |
|
| 9 | 8 | ad2ant2r | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( S sSet <. A , C >. ) = ( ( S |` ( _V \ { A } ) ) u. { <. A , C >. } ) ) |
| 10 | 9 | reseq1d | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( S sSet <. A , C >. ) |` ( _V \ { B } ) ) = ( ( ( S |` ( _V \ { A } ) ) u. { <. A , C >. } ) |` ( _V \ { B } ) ) ) |
| 11 | resundir | |- ( ( ( S |` ( _V \ { A } ) ) u. { <. A , C >. } ) |` ( _V \ { B } ) ) = ( ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) u. ( { <. A , C >. } |` ( _V \ { B } ) ) ) |
|
| 12 | elex | |- ( C e. W -> C e. _V ) |
|
| 13 | 12 | ad2antrl | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> C e. _V ) |
| 14 | opelxpi | |- ( ( A e. _V /\ C e. _V ) -> <. A , C >. e. ( _V X. _V ) ) |
|
| 15 | 1 13 14 | sylancr | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> <. A , C >. e. ( _V X. _V ) ) |
| 16 | opex | |- <. A , C >. e. _V |
|
| 17 | 16 | relsn | |- ( Rel { <. A , C >. } <-> <. A , C >. e. ( _V X. _V ) ) |
| 18 | 15 17 | sylibr | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> Rel { <. A , C >. } ) |
| 19 | dmsnopss | |- dom { <. A , C >. } C_ { A } |
|
| 20 | disjsn2 | |- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
|
| 21 | 20 | ad2antlr | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( { A } i^i { B } ) = (/) ) |
| 22 | disj2 | |- ( ( { A } i^i { B } ) = (/) <-> { A } C_ ( _V \ { B } ) ) |
|
| 23 | 21 22 | sylib | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> { A } C_ ( _V \ { B } ) ) |
| 24 | 19 23 | sstrid | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> dom { <. A , C >. } C_ ( _V \ { B } ) ) |
| 25 | relssres | |- ( ( Rel { <. A , C >. } /\ dom { <. A , C >. } C_ ( _V \ { B } ) ) -> ( { <. A , C >. } |` ( _V \ { B } ) ) = { <. A , C >. } ) |
|
| 26 | 18 24 25 | syl2anc | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( { <. A , C >. } |` ( _V \ { B } ) ) = { <. A , C >. } ) |
| 27 | 26 | uneq2d | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) u. ( { <. A , C >. } |` ( _V \ { B } ) ) ) = ( ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) u. { <. A , C >. } ) ) |
| 28 | 11 27 | eqtrid | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( ( S |` ( _V \ { A } ) ) u. { <. A , C >. } ) |` ( _V \ { B } ) ) = ( ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) u. { <. A , C >. } ) ) |
| 29 | 10 28 | eqtrd | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( S sSet <. A , C >. ) |` ( _V \ { B } ) ) = ( ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) u. { <. A , C >. } ) ) |
| 30 | 29 | uneq1d | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( ( S sSet <. A , C >. ) |` ( _V \ { B } ) ) u. { <. B , D >. } ) = ( ( ( ( S |` ( _V \ { A } ) ) |` ( _V \ { B } ) ) u. { <. A , C >. } ) u. { <. B , D >. } ) ) |
| 31 | setsval | |- ( ( S e. V /\ D e. X ) -> ( S sSet <. B , D >. ) = ( ( S |` ( _V \ { B } ) ) u. { <. B , D >. } ) ) |
|
| 32 | 31 | reseq1d | |- ( ( S e. V /\ D e. X ) -> ( ( S sSet <. B , D >. ) |` ( _V \ { A } ) ) = ( ( ( S |` ( _V \ { B } ) ) u. { <. B , D >. } ) |` ( _V \ { A } ) ) ) |
| 33 | 32 | ad2ant2rl | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( S sSet <. B , D >. ) |` ( _V \ { A } ) ) = ( ( ( S |` ( _V \ { B } ) ) u. { <. B , D >. } ) |` ( _V \ { A } ) ) ) |
| 34 | resundir | |- ( ( ( S |` ( _V \ { B } ) ) u. { <. B , D >. } ) |` ( _V \ { A } ) ) = ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. ( { <. B , D >. } |` ( _V \ { A } ) ) ) |
|
| 35 | elex | |- ( D e. X -> D e. _V ) |
|
| 36 | 35 | ad2antll | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> D e. _V ) |
| 37 | opelxpi | |- ( ( B e. _V /\ D e. _V ) -> <. B , D >. e. ( _V X. _V ) ) |
|
| 38 | 2 36 37 | sylancr | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> <. B , D >. e. ( _V X. _V ) ) |
| 39 | opex | |- <. B , D >. e. _V |
|
| 40 | 39 | relsn | |- ( Rel { <. B , D >. } <-> <. B , D >. e. ( _V X. _V ) ) |
| 41 | 38 40 | sylibr | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> Rel { <. B , D >. } ) |
| 42 | dmsnopss | |- dom { <. B , D >. } C_ { B } |
|
| 43 | ssv | |- { A } C_ _V |
|
| 44 | ssv | |- { B } C_ _V |
|
| 45 | ssconb | |- ( ( { A } C_ _V /\ { B } C_ _V ) -> ( { A } C_ ( _V \ { B } ) <-> { B } C_ ( _V \ { A } ) ) ) |
|
| 46 | 43 44 45 | mp2an | |- ( { A } C_ ( _V \ { B } ) <-> { B } C_ ( _V \ { A } ) ) |
| 47 | 23 46 | sylib | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> { B } C_ ( _V \ { A } ) ) |
| 48 | 42 47 | sstrid | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> dom { <. B , D >. } C_ ( _V \ { A } ) ) |
| 49 | relssres | |- ( ( Rel { <. B , D >. } /\ dom { <. B , D >. } C_ ( _V \ { A } ) ) -> ( { <. B , D >. } |` ( _V \ { A } ) ) = { <. B , D >. } ) |
|
| 50 | 41 48 49 | syl2anc | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( { <. B , D >. } |` ( _V \ { A } ) ) = { <. B , D >. } ) |
| 51 | 50 | uneq2d | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. ( { <. B , D >. } |` ( _V \ { A } ) ) ) = ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. { <. B , D >. } ) ) |
| 52 | 34 51 | eqtrid | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( ( S |` ( _V \ { B } ) ) u. { <. B , D >. } ) |` ( _V \ { A } ) ) = ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. { <. B , D >. } ) ) |
| 53 | 33 52 | eqtrd | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( S sSet <. B , D >. ) |` ( _V \ { A } ) ) = ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. { <. B , D >. } ) ) |
| 54 | 53 | uneq1d | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( ( S sSet <. B , D >. ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) = ( ( ( ( S |` ( _V \ { B } ) ) |` ( _V \ { A } ) ) u. { <. B , D >. } ) u. { <. A , C >. } ) ) |
| 55 | 7 30 54 | 3eqtr4a | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( ( S sSet <. A , C >. ) |` ( _V \ { B } ) ) u. { <. B , D >. } ) = ( ( ( S sSet <. B , D >. ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) ) |
| 56 | ovex | |- ( S sSet <. A , C >. ) e. _V |
|
| 57 | simprr | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> D e. X ) |
|
| 58 | setsval | |- ( ( ( S sSet <. A , C >. ) e. _V /\ D e. X ) -> ( ( S sSet <. A , C >. ) sSet <. B , D >. ) = ( ( ( S sSet <. A , C >. ) |` ( _V \ { B } ) ) u. { <. B , D >. } ) ) |
|
| 59 | 56 57 58 | sylancr | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( S sSet <. A , C >. ) sSet <. B , D >. ) = ( ( ( S sSet <. A , C >. ) |` ( _V \ { B } ) ) u. { <. B , D >. } ) ) |
| 60 | ovex | |- ( S sSet <. B , D >. ) e. _V |
|
| 61 | simprl | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> C e. W ) |
|
| 62 | setsval | |- ( ( ( S sSet <. B , D >. ) e. _V /\ C e. W ) -> ( ( S sSet <. B , D >. ) sSet <. A , C >. ) = ( ( ( S sSet <. B , D >. ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) ) |
|
| 63 | 60 61 62 | sylancr | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( S sSet <. B , D >. ) sSet <. A , C >. ) = ( ( ( S sSet <. B , D >. ) |` ( _V \ { A } ) ) u. { <. A , C >. } ) ) |
| 64 | 55 59 63 | 3eqtr4d | |- ( ( ( S e. V /\ A =/= B ) /\ ( C e. W /\ D e. X ) ) -> ( ( S sSet <. A , C >. ) sSet <. B , D >. ) = ( ( S sSet <. B , D >. ) sSet <. A , C >. ) ) |